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ABSTRACT 

We present some straightforward algorithms for the 
generation and display in 3-D of fractal shapes. These 
techniques are very general and particularly adapted to 
shapes which are much more costly to generate than to 
display, such as those fractal surfaces defined by itera- 
tion of algebraic transformations. In order to deal with 
the large space and time requirements of calculating 
these shapes, we introduce a boundary-tracking algor- 
ithm particularly adapted for array-processor imple- 
mentation. The resulting surfaces are then shaded and 
displayed using z-buffer type algorithms. A new class 
of displayable geometric objects, with great diversity of 
form and texture, is introduced by these techniques. 
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[Computer Graphics]: Computational Geometry and 
Object Modeling - Curve, surface, solid, and object 
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Introduction 

Until recently the geometric shapes of interest in 
engineering, science, and mathematics generally were 
constructed from the simple, smooth objects of classi- 
cal geometry. However, a new approach to geometry 
has now arisen, largely through the efforts of its origi- 
nator, B. Mandelbrot. He singled out a class of shapes, 
named them fractals, and developed nonrandom and 
random fractal models to simulate (and in some cases, 
to explain) the roughness and fragmentation of diverse 
aspects of nature. His fractal models of terrain prove 
of wide application in computer graphics [2,6,8]. 

Of special interest are the nonrandom fractals 
which are obtained by the iteration of algebraic func- 
tions. The mathematics of iteration has a long history, 
dating back to the work of Poincare, Fatou, and Julia 
[4]. However, the striking beauty and complexity of 
the resulting shapes in the complex plane was not re- 
vealed until the recent investigations of Mandelbrot  
[7]. 

The mathematical study of these shapes has led us 
to consider their counterparts in three- and four- 
dimensional space. In some cases a 1-parameter family 
of planar fractals may be better understood by regard- 
ing the whole family as a fractal object in 3-space. 
The major impetus for this work however was the dis- 
covery of a class of geometric shapes which result in 
three and four dimensions from iteration of algebraic 
operations in the quaternions [9]. Such shapes can 
properly be visualized only by producing images as 
close as possible to the 3-D visual experience. With 
the use of high-resolution computer graphics one simu- 
lates the effect of viewing such fractal objects as if 
they were modeled from clay and illuminated from 
outside. 

This article describes a system developed'for gener- 
ating and displaying such shapes in 3-D. The techni- 
ques discussed are generally applicable in the genera- 
tion and display of connected surfaces which form the 
boundaries between regions defined by different arith- 
metic or logical conditions. That is, the surface in 

61 



Computer Graphics Volume 16, Number 3 July 1982 

quest ion is required to have an inside and an outside,  
and it is assumed possible to distinguish in which set a 
given point  lies by per forming a series of calculat ions 
on the coordinates  of the point.  The  techniques  dis- 
cussed may be used to de te rmine  and display any such 
surface. However ,  the most  in teres t ing applicat ions are 
on surfaces whose  de te rmina t ion  requires  a great  deal  
of calculat ion,  and the display techniques  were  par t icu-  
larly designed for very irregular  fractal  surfaces. 

The mathemat ica l  principle behind the genera t ion  
of these fractal  shapes involves the i te ra t ion  of a lgebra-  
ic t ransformat ions .  Cons ider  a mapping 

T: R n ~ R n 
of n-dimensional  Euc l idean  space into itself. If x is a 
point  in R n, successive applicat ions of T def ine  a se- 
quence  of points  in Rn: 

Xo=X, X l = T ( x ) ,  x 2 = T ( T ( x ) ) ,  x 3 = T ( T ( T ( x ) ) )  . . . .  

There  are several  possibili t ies for  such a sequence;  
for example  the points  may d iverge  to inf ini ty;  the 
sequence  of points  could converge  to a f ini te  limit;  the 
sequence  could repeat  a cyclic series of points;  and so 
on. The result  of such an i te ra t ion  ordinari ly depends  
on the start ing point  x. When  that  is the case, points  
in R n may be classified according to the results of such 
an i terat ion.  Fo r  example,  T(x)  = x 2 defines a map-  
ping of the complex plane into itself. If  [ x [ >1 ,  suc- 
cessive applicat ions of T result  in a sequence  tending to 
infinity. If [ x I <1 the sequence  converges  to 0. (Zero 
and infinity comprise  the a t t rac tor  set of T.) If x is in 
the circle I x l = l ,  the sequence  remains in that  circle. 
In this case the three sets def ined by I x l < l , l x l = l ,  
and I x l > l  are each preserved  b y T .  One  in fact  gains 
considerable  unders tanding  of the t ransformat ion  T by 
cons ider ing  only what  it does  to the invar iant  set 
Ix I---l; The algebraic  symmetr ies  present  in the for-  

mula for T are exhibi ted in the geomet ry  of this invari-  
ant set. This set can be descr ibed as the boundary  
be tween  the points  a t t rac ted  to zero and those a t t ract-  
ed to infinity. 

The  surfaces  i l lustrated in this ar t icle  are all de-  
f ined by analogous phenomena ,  but  where  the t ransfor-  
mat ion T may be given on R 3 or  R 4 by any series of 
algebraic opera t ions  on the underlying real coord ina tes  
of the points. The  algebraic  symmetr ies  involved  in the 
t ransformat ions  can be more complex  than in the ex- 
ample above  and the result ing invariant  surfaces usual- 
ly are fractals. To check whe ther  a given point  is in- 
side or  outs ide a given invar iant  surface,  one calculates  
as many as 1000 i terates  in the sequence  
T ( x ) , T ( T ( x ) ) , T ( T ( T ( x ) ) )  ..... test ing whe ther  the points  
satisfy the appropr ia te  condit ions.  

F ra c ta l  d i m e n s i o n  and s u r f a c e  m o d e l i n g  

We refer  the reader  to [6,8] for a thorough discus- 
sion of  fractals.  Frac ta ls  are de f ined  (see [6,8]) as 
ma themat i ca l  ob jec ts  whose  topologica l  d imens ion  
differs f rom their  Hausdor f f  (fractal)  dimension.  This 
d imension is also related to the compute r -g raph ic  dis- 
play of  complex  objects .  Suppose  given a complex  
rea l -wor ld  e n v i r o n m e n t  which is to be d isplayed by 
compute r  graphics;  e.g., a complex  mechanica l  device  
or a natural  scene. Such an env i ronmen t  must  be ap- 
p rox ima ted  when  it is r ep re sen ted  in te rna l ly  in the 
computer .  Typical ly  one can specify a resolut ion or 
to lerance  and then represent  such an env i ronmen t  in 
terms of primit ive objects  which are no smaller  than  
the specif ied tolerance.  An  es t imate  of  the complex i ty  
of such an env i ronment  is given by the number  of such 
primit ives required at a given resolut ion.  See [11] for  a 
discussion of how var ious  h idden-su r face  a lgor i thms 
per form as a func t ion  of  this type of  complexi ty .  

More  general ly,  one may ask how the number  of  
pr imit ive e lements  varies as the to lerance  is decreased.  
If for example  a surface is r epresen ted  by planar  poly-  
gons, one would  expect  the number  of such primit ives  
to increase by at least a fac tor  of four  when  the resolu-  
t ion is doubled.  The  fractal  d imension  of the env i ron-  
ment  can be related to this rate of increase.  Suppose 
the surface of  the env i ronment  is r epresen ted  by a set 
of cubes of a given size ( to lerance)  which conta ins  the 
surface.  Le t  N(r )  denote  the number  of  such cubes of  
d iameter  r which are required.  If N( r )  grows as a pow-  
er r -D of the diameter ,  then  D is the fractal  d imens ion  
of the surface in quest ion.  Note  that  D will general ly  
be be tween  2 and 3. The fractal  d imens ion  is there fore  
direct ly  re la ted  to the number  of  sample  points  re-  
qui red  to descr ibe  the boundary  of an objec t .  The  
boundary  representa t ion  used here is an approx imat ion  
of the above  cubic descript ion.  The rate of growth  of 
the size of the surface models  may be used to give a 
rough approximat ion  of the fractal  dimension.  Other  
representa t ions ,  using for  ins tance planar  polygons,  can 
be similarly re la ted to the fractal  dimension.  

A n o t h e r  measure  of the di f f icul ty  of graphical ly  
represen t ing  a complex  e n v i r o n m e n t  is g iven by the 
depth complexi ty  associated with a given viewer  posi-  
t ion and line of sight. The  depth  complexi ty  is the 
number  of visible surfaces in tersect ing the ray f rom the 
v iewer  in the di rect ion of his line of sight. Dep th  com- 
plexity may be considered an indicator  of  the sort ing or  
pr ior i ty-checking which is required to de te rmine  visibil- 
ity in a h idden-surface  algori thm. Typical ly  a mathe-  
mat ical  ob jec t  in R 3 of d imens ion  D in te rsec ts  a 
straight line in a set of d imension  D-2.  Thus the num- 
ber  of surfaces with which the hidden surface a lgor i thm 
must deal  is of the o rder  of r 2-D, depend ing  on the 
d iameter  r of primitives.  
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Surface Determination 

The basic technique of calculat ing these invariant  
surfaces involves  i tera t ing a func t ion  repea ted ly  and 
keeping track of the points which satisfy certain cri te-  
ria af ter  many iterations.  Genera l ly  the result  of such 
a calculat ion is a de te rmina t ion  of whether  the start ing 
point  is inter ior  or exter ior  to a specif ied invariant  set. 
When such a starting point  is interior,  it is presumed 
(for  purposes of approximat ion)  that  the entire cube 
associa ted  with the point  is interior.  Never the less ,  
these "point  de te rmina t ions"  provide  only a sampling 
of the surface and one must maintain  a dis t inct ion be-  
tween grid points and the volumes they cor respond to. 
The surfaces could in principle be de te rmined  by evalu- 
ating every  point  on a large 3-dimensional  grid, then 
select ing boundary  points  according to known techni-  
ques (see [1,5].) However ,  the amount  of calculat ion 
and data involved would prohibit  such a de te rmina t ion  
on a large grid (say 1 0 0 0 x l 0 0 0 x l 0 0 0 ) .  Instead,  the 
surface is fol lowed throughout  the grid, wi thout  calcu- 
lating points  far f rom the surface. The inter ior  points  
which adjoin  exter ior  points  are re ta ined  (as p roved  
boundary  points)  and their  ne ighbors  b e c o m e  candi-  
dates for the boundary,  to be tested in the next  cycle. 
The number  of funct ion evaluat ions  is reduced consid-  
erably by this technique.  (Exact ly  how many funct ion 
eva lua t ions  depends  on the fractal  d imens ion  of  the 
surface in quest ion.)  This technique also provides  in- 
format ion  about  connect iv i ty  of the surface: One  can 
separa te ly  calculate  and examine  d i f fe ren t  connec ted  
components  of a given surface. 

An array processor  was employed  to do f loat ing-  
point  ar i thmetic  offline. Because the point  evaluat ions  
can be done by repeatedly  performing the same opera-  
tions on lists of real numbers ,  the array processor  is 
ideally suited for this type of application.  However ,  
these ar i thmet ic  calcula t ions  still require  much more  
compute r  t ime than any o ther  aspect  of the surface 
determinat ion.  The array processor  was p rogrammed 
to input a list of up to 2000 points  and output  a list of 
as many codes,  indicating whether  each point  is inside 
or outside the given geometr ic  shape. This process is 
most  eff icient ly per fo rmed  when the number  of input  
points  approaches  its maximum. Therefore ,  in fol low- 
ing the surface, it was impor tant  to deal  eff icient ly with 
large stacks, ra ther  than keeping the stacks short.  
What  is presented  here is a systemat ic  way of ef fec t ive-  
ly keeping track of the results of calculat ions,  and en-  
suring that  most  of the compute r  t ime involved is spent  
on funct ion evaluat ion,  not  on manipula t ion  of points.  
These methods  were applied on an IBM 3033 with a 
F loa t ing  Point  Systems A P 1 9 0 L  array processor .  Ordi-  
narily the funct ion evaluat ion  on the array processor  
used more than 9 0 %  of the total  C P U  time. 

The basic requirements  of the surface de te rmina-  
t ion are as follows: 

1. Repe t i t i on  of poin t  eva lua t ions  should be 
avoided,  as this is the most  t ime-consuming  operat ion.  

2. The  algori thm should make no assumptions 
about  the extent  of the surface;  it may be ext remely  
convolu ted  (even approaching space filling) or it may 
be very smooth.  

3. No sorting or compar ison of  stacks should be 
done;  all stack manipulat ions should be l inear in com- 
plexity,  so that  there  be no pena l ty  for using large 
stacks. 

The final output  of this process is a list of points  P 
(boundary  points) on the grid, satisfying the fol lowing: 

1. P is inside the shape in ques t ion 
2. At  least one of the neighbors  of P is outs ide 

the shape in question.  
3. P is connec ted  to one of a set of start ing 

points  via a path which fol lows the grid and consists 
only of boundary  points.  

Note  that  the above  3 condi t ions  provide a recur-  
sive def ini t ion of the desired set of boundary  points,  
depending  only on the mathemat ica l  shape in quest ion,  
the grid used, and the set of start ing points. To deter-  
mine all boundary  points,  mainta in  a stack of newly-  
d iscovered boundary  points,  and perform the fol lowing 
until this stack is exhausted:  

1. List all ne ighbors  of newly-d i scovered  
boundary  points. 

2. De te rmine  which of  these ne ighbors  are 
interior.  Those which are inter ior  are candidates  for 
the boundary  (since they satisfy condi t ions  1 and 3 
above) .  

3. Check  the neighbors  of the candidates .  If a 
candidate  has a neighbor  which is exter ior ,  the candi-  
date  is a boundary  point,  and is listed with the newly-  
d iscovered boundary  points. 

In order  to be precise,  one must def ine  the not ion  
of ad jacency  which is to be used in de te rmin ing  the 
"ne ighbors"  found in steps 1 and 3. It was in fact  
useful to use d i f ferent  not ions  of adjacency,  depending  
on the fractal  characteris t ics  of  the surface being inves-  
tigated. The not ion  of ad jacency used in step 1 deter-  
mines the ex ten t  of the surface;  the re fore  surfaces 
which conta in  long, thin strands are more thoroughly  
del ineated by using a liberal not ion  of adjacency,  for 
instance consider ing cubes which touch only at a cor-  
ner to be adjacent .  The not ion  of ad jacency used in 
step 3 determines  how thoroughly the surface is to be 
covered.  In deciding whether  a given inter ior  cube was 
on the boundary,  it was usually required to share a face 
with an exter ior  cube. 

In order  to begin the surface  de te rmina t ion ,  one 
must specify a starting list of boundary  points.  (The 
choice of start ing points  will establish which compo-  
nents  of the surface are to be de termined. )  The start ing 
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points can be easily specif ied by choosing a line seg- 
ment  which joins the inter ior  and exter ior  of  the given 
shape. At  least one point  on such a segment  will be a 
boundary  point,  and can serve as a " seed"  for the sur- 
face determinat ion.  

It should be observed  that  the names " in te r io r"  and 
"ex te r io r"  are chosen only to distinguish two al terna-  
tive propert ies ,  not  necessari ly descr ibing bounded  and 
unbounded  sets. In fact,  the a lgori thm allows one to 
fol low ei ther  the inter ior  or exter ior  of the given math-  
ematical  boundary.  There  are of ten interes t ing qual i ta-  
t ive di f ferences  be tween  these two sets, as shown in 
the il lustrations. 

Display Methods 

The output  of the preceding calculat ion is a sor ted 
file of grid vert ices;  typically such a file will conta in  
over  one mill ion points.  This list of grid points  pro-  
vides at best inner  and outer  limits to the extent  of the 
surface;  at worst  a biased sampling of points  near  the 
surface. To each point  on the list cor responds  a cube 
which could be regarded as the primit ive for the display 
process.  H o w e v e r ,  one only can conc lude  that  the 
cube in quest ion intersects  the given volume,  not  that  
the cube ' s  surface coincides  with part  of the f racta l  
surface being displayed. 

Because  the surfaces  to be d isplayed are fractal ,  
the display techniques  were  chosen so as to avoid the 
cus tomary  pre fe rence  for smoothness .  The  details one  
sees at a given resolut ion should suggest  higher  resolu-  
t ion will reveal  more detail.  It was there fore  consid-  
ered inappropr ia te  to model  the surfaces with planar  or  
smooth  pr imit ives;  the points  themse lves  b e c o m e  the 
pr imit ives  of  the display process.  Concep tua l ly  the 
presence  of a point  on the list represents  only the fact  
that a certain por t ion  of 3-space is occupied  by some 
opaque  material ;  this should not  imply the presence  of  
a smooth  surface bounding  that  opaque  material .  

The display process is in two stages. In the first 
stage, i l lumination intensit ies are assigned to each ver-  
tex, depending  on the relat ionship of th~ vert ices  to an 
imagined  light source.  Dur ing  the second stage, an 
image is produced,  depending  on the d i rec t ion  to the 
viewer.  The first stage is more t ime-consuming ,  requir-  
ing two passes through the data  points.  The second,  
image-p roduc ing  stage, involves  only one  sequent ia l  
pass through the data. The  second stage may be per-  
formed repeatedly ,  to obta in  a series of  views of the 
objec t  f rom di f ferent  angles. The algori thms for both  
processes  are based on z-buffers ;  that is, the model  is 
p ro jec ted  into a two-d imens iona l  buffer  in memory ,  the 
pro jec t ion  being per formed  in such an order  so as to 
handle  shading and hidden surface  e l iminat ion.  Be-  
cause of the s implici ty of  the pr imit ive display ele-  
ments,  no sort ing is required for e i ther  i l lumination and 

display project ions .  If the data  initially is sor ted  on 
increasing model  coordinates ,  then the z -buf fe r  pro jec-  
t ion can for most  direct ions be achieved by a forward  
or  reverse  pass th rough the data.  P ro j ec t i on  in the 
remaining direct ions can be achieved by a simple res- 
tucturing of the initial sort,  again done in l inear  time. 
Al ternat ive ly ,  the visible or  i l luminated surfaces can be 
found by determining the dis tance of each point  f rom 
the v iewer  or  l ight-source at the t ime of the projec t ion ,  
re ta in ing  closest  points .  This  also is done  in l inear  
time, but  may require addit ional  space to retain visible 
z-coordinates .  

The  use of z -buf fe r s  makes  this an image- space  
ra ther  than ob jec t - space  algori thm; this is not  a serious 
drawback,  because the surfaces are only calcula ted to a 
prespecif ied  accuracy.  The pr imary diff icul ty encoun-  
tered with z -buf fe r  techniques  was in de te rmin ing  the 
i l lumination of surfaces which are near ly  parallel  to the 
light direct ion.  This is a s i tuat ion where  some of the 
in fo rmat ion  ordinar i ly  lost in a z -bu f fe r  p ro jec t ion  
must  be recovered.  Our  solut ion to this p rob lem was 
to regard the surface cubes as somewhat  t ranslucent ;  
cubes immedia te ly  behind i l luminated cubes receive  a 
por t ion of the light of the i l luminated ones. This tech-  
nique is par t icular ly  useful  for  e l iminat ing  s ta i rcasing 
when the light d i rect ion is a long one  of the grid axes. 

Frac ta l  surfaces are not  different iable .  This implies 
that  the surface normal  vec tor  at a given point  is gen-  
erally not  defined.  In order  to s imulate light ref lec-  
tance  one can however  de te rmine  a " typ ica l "  normal  
di rect ion at a given point  by compar ing  its coord ina tes  
with those of nearby points.  To obta in  an approx imate  
normal  vec tor  at a given i l luminated point  (which has 
p ro j ec t ed  into the z -buf fe r ) ,  the  z - coo rd ina t e s  of  its 
neighbors  in the z -buf fe r  are compared .  The  differ-  
ence  in z - coo rd ina t e  b e t w e e n  two points  d iv ided by 
their  separat ion in the z -buf fe r  is used to es t imate  the 
tangent  of the angle be tween  the light source and the 
surface normal.  The  average of several  such surface-  
normal  approximat ions  can be used to def ine  the re- 
f lect ivi ty  at a point.  The figure be low shows how such 
a normal  vector  is calculated:  

> 
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Points labeled P and Q are projected to a z-buffer 
in the direction indicated by parallel arrows. The line 
perpendicular to PQ forms an angle theta with the 
illumination direction. Cos(0) may be calculated as the 
ratio a /c ,  where a is proportional to the distance be- 
tween the projections of P and Q in the z-buffer, b is 
the difference in z-coordinates of the two points, and c 
is the corresponding hypotenuse. Two of these calcula- 
tions al~ right angles determine a normal vector. 

The final part of the picture display consists of 
projecting the points in the direction of an imagined 
viewer, using the intensities determined above to de- 
cide how bright a given point will appear, this process 
is a straightforward z-buffer algorithm and is per- 
formed with an orthogonal projection. In order to 
ensure that the visible surfaces completely conceal the 
hidden surfaces, individual points in the model may be 
projected to several nearby positions in the image z- 
buffer. The result is a half-tone picture in which each 
visible point in the model produces one or more dots 
on the picture. 

Illustrations 

The illustrations have been chosen as examples of 
the diversity of form and texture which result from 
these techniques. The first two illustrations show 1- 
parameter families of fractals in the complex plane. 
Each horizontal slice is the shape in the complex plane 
corresponding to choosing one value of the parameter, 
and the whole figure shows the effect of changing the 
parameter. Shapes in the complex plane upon which 
these figures were based were first displayed graphical- 
ly by B. Mandelbrot. See plate 187 in [8] for another 
illustration of this type. The surfaces in figures 1 and 
2 are defined as follows: For each complex number 
of absolute value 1, iterate the transformation T(z) = 

z(1-z). The set of complex numbers z for which the 
successive iterates do not tend to infinity defines a 
subset of the complex plane. The illustrated 3-d 
shapes show how this planar shape varies for ~ on the 
circle I 2, I = 1. By a change of variables, the shape in 
figure 1 is "unwound",  producing figure 2. The two 
objects were followed on grids of size 6003 . Each is 
represented by approximately two million points. They 
are displayed at resolution 600x800 using two light 
sources. 

Figures 3 th/'ough 6 illustrate some invariant shapes 
determined by the iteration of quadratic polynomials in 
the four-dimensional quaternions [3]. (See [9] for a 
discussion of the mathematics involved in iteration of 
rational functions in the quaternions). For our present 
purposes, it suffices to observe that quaternion multi- 
plication and addition provide a 4-dimensional general- 
ization of complex arithmetic, based on vector algebra. 
Models in R 3 are produced by starting the iteration in a 
three dimensional subspace of the quaternions spanned 

by 1, i, and j. The resulting shapes were followed on a 
grid of size 12003 . They were displayed at resolution 
1024x1280 using two light sources. 

Figure 3 is defined by iteration of a quadratic po- 
lynomial in the quaternions, of the form k z(1-z),  with 
a complex number k. The parameter ~, was chosen so 
as to obtain an attractive cycle of length 7, using tech- 
niques developed in [7]. The shape shown is a con- 
nected component of the set of points attracted to that 
cycle. The shape is invariant under a 7-fold iteration 
of the defining transformation, and is one of an infinite 
number of components defined by that invariance. 
This component  is represented by about 5.6 million 
points. 

Figure 4 is defined by the iteration of another po- 
lynomial of the form k z(1-z). In this case, the shapes 
illustrated are different components of the set attracted 
to a cycle of length four. 

Figure 5 is defined by the iteration of a polynomial 
of the form z2+t~, with t~ a complex number chosen so 
as to produce an attractive cycle of length 4. The illus- 
trated shape is the boundary of the set attracted to that 
cycle. Four colors are used to distinguish invariant sets 
defined by 4-fold iteration of the transformation. 

Figure 6 is defined by the polynomial i ( z2+ l ) .  
The illustrated shape is one of two components which 
together comprise the set of points attracted to a cycle 
of length two. 
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Figure I Figure 2 

Two 3-d objects defined as 1-parameter families of fractal curves. 
Each horizontal slice results from iterating a quadratic polynomial in the complex plane. 
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Figure 3 

A fractal surface invariant under 7-fold 
iteration of a polynomial in the quaternions. 

Figure 4 

Several components of the domain attracted 
to a cycle of length 4. 

Figure 5 

Many components of the domain attracted to 
a cycle of length 4. 

Figure 6 

One2of 2 components of the shape defined by 
i (x +i). 
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