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ABSTRACT

We present some straightforward algorithms for the
generation and display in 3-D of fractal shapes. These
techniques are very general and particularly adapted to
shapes which are much more costly to generate than to
display, such as those fractal surfaces defined by itera-
tion of algebraic transformations. In order to deal with
the large space and time requirements of calculating
these shapes, we introduce a boundary-tracking algor-
ithm particularly adapted for array-processor imple-
mentation. The resulting surfaces are then shaded and
displayed using z-buffer type algorithms. A new class
of displayable geometric objects, with great diversity of
form and texture, is introduced by these techniques.
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Introduction

Until recently the geometric shapes of interest in
engineering, science, and mathematics generally were
constructed from the simple, smooth objects of classi-
cal geometry. However, a new approach to geometry
has now arisen, largely through the efforts of its origi-
nator, B. Mandelbrot. He singled out a class of shapes,
named them fractals, and developed nonrandom and
random fractal models to simulate (and in some cases,
to explain) the roughness and fragmentation of diverse
aspects of nature. His fractal models of terrain prove
of wide application in computer graphics [2,6,8].

Of special interest are the nonrandom fractals
which are obtained by the iteration of algebraic func-
tions. The mathematics of iteration has a long history,
dating back to the work of Poincare, Fatou, and Julia
[4]. However, the striking beauty and complexity of
the resulting shapes in the complex plane was not re-
vealed until the recent investigations of Mandelbrot

[7].

The mathematical study of these shapes has led us
to consider their counterparts in three- and four-
dimensional space. In some cases a 1-parameter family
of planar fractals may be better understood by regard-
ing the whole family as a fractal object in 3-space.
The major impetus for this work however was the dis-
covery of a class of geometric shapes which result in
three and four dimensions from iteration of algebraic
operations in the quaternions [9]. Such shapes can
properly be visualized only by producing images as
close as possible to the 3-D visual experience. With
the use of high-resolution computer graphics one simu-
lates the effect of viewing such fractal objects as if
they were modeled from clay and illuminated from
outside.

This article describes a system developed*for gener-
ating and displaying such shapes in 3-D. The techni-
ques discussed are generally applicable in the genera-
tion and display of connected surfaces which form the
boundaries between regions defined by different arith-
metic or logical conditions. That is, the surface in
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question is required to have an inside and an outside,
and it is assumed possible to distinguish in which set a
given point lies by performing a series of calculations
on the coordinates of the point. The techniques dis-
cussed may be used to determine and display any such
surface. However, the most interesting applications are
on surfaces whose determination requires a great deal
of calculation, and the display techniques were particu-
larly designed for very irregular fractal surfaces.

The mathematical principle behind the generation
of these fractal shapes involves the iteration of algebra-
ic transformations. Consider a mapping

T: R? » Rn
of n-dimensional Euclidean space into itself. If x is a
point in RN, successive applications of T define a se-~
quence of points in RA:

x0=%, X1=T(x), x=T(T(x)), x3=T(T(T(x))), ...

There are several possibilities for such a sequence;
for example the points may diverge to infinity; the
sequence of points could converge to a finite limit; the
sequence could repeat a cyclic series of points; and so
on. The result of such an iteration ordinarily depends
on the starting point x. When that is the case, points
in R may be classified according to the results of such
an iteration. For example, T(x) = x2 defines a map-
ping of the complex plane into itself. If |x]|>1, suc-
cessive applications of T result in a sequence tending to
infinity. If | x| <1 the sequence converges to 0. (Zero
and infinity comprise the attractor set of T.) If x is in
the circle | x| =1, the sequence remains in that circle.
In this case the three sets defined by |x]|<1,|x|=1,
and | x| >1 are each preserved by T. One in fact gains
considerable understanding of the transformation T by
considering only what it does to the invariant set
| x| =1; The algebraic symmetries present in the for-
mula for T are exhibited in the geometry of this invari-
ant set. This set can be described as the boundary
between the points attracted to zero and those attract-
ed to infinity.

The surfaces illustrated in this article are all de-
fined by analogous phenomena, but where the transfor-
mation T may be given on R3 or R4 by any series of
algebraic operations on the underlying real coordinates
of the points. The algebraic symmetries involved in the
transformations can be more complex than in the ex-
ample above and the resulting invariant surfaces usual-
ly are fractals. To check whether a given point is in-
side or outside a given invariant surface, one calculates
as many as 1000 iterates in the sequence
T(x),T(T(x)),T(T(T(x))),..., testing whether the points
satisfy the appropriate conditions.
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Fractal dimension and surface modeling

We refer the reader to [6,8] for a thorough discus-
sion of fractals. Fractals are defined (see [6,8]) as
mathematical objects whose topological dimension
differs from their Hausdorff (fractal) dimension. This
dimension is also related to the computer-graphic dis-
play of complex objects. Suppose given a complex
real-world environment which is to be displayed by
computer graphics; e.g., a complex mechanical device
or a natural scene. Such an environment must be ap-
proximated when it is represented internally in the
computer. Typically one can specify a resolution or
tolerance and then represent such an environment in
terms of primitive objects which are no smaller than
the specified tolerance. An estimate of the complexity
of such an environment is given by the number of such
primitives required at a given resolution. See [11] for a
discussion of how various hidden-surface algorithms
perform as a function of this type of complexity.

More generally, one may ask how the number of
primitive elements varies as the tolerance is decreased.
If for example a surface is represented by planar poly-
gons, one would expect the number of such primitives
to increase by at least a factor of four when the resolu-
tion is doubled. The fractal dimension of the environ-
ment can be related to this rate of increase. Suppose
the surface of the environment is represented by a set
of cubes of a given size (tolerance) which contains the
surface. Let N(r) denote the number of such cubes of
diameter r which are required. If N(r) grows as a pow-
er r-D of the diameter, then D is the fractal dimension
of the surface in question. Note that D will generally
be between 2 and 3. The fractal dimension is therefore
directly related to the number of sample points re-
quired to describe the boundary of an object. The
boundary representation used here is an approximation
of the above cubic description. The rate of growth of
the size of the surface models may be used to give a
rough approximation of the fractal dimension. Other
representations, using for instance planar polygons, can
be similarly related to the fractal dimension.

Another measure of the difficulty of graphically
representing a complex environment is given by the
depth complexity associated with a given viewer posi-
tion and line of sight. The depth complexity is the
number of visible surfaces intersecting the ray from the
viewer in the direction of his line of sight. Depth com-
plexity may be considered an indicator of the sorting or
priority-checking which is required to determine visibil-
ity in a hidden-surface algorithm. Typically a mathe-
matical object in R3 of dimension D intersects a
straight line in a set of dimension D-2. Thus the num-
ber of surfaces with which the hidden surface algorithm
must deal is of the order of r2-D, depending on the
diameter r of primitives.
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Surface Determination

The basic technique of calculating these invariant
surfaces involves iterating a function repeatedly and
keeping track of the points which satisfy certain crite-
ria after many iterations. Generally the result of such
a calculation is a determination of whether the starting
point is interior or exterior to a specified invariant set.
When such a starting point is interior, it is presumed
(for purposes of approximation) that the entire cube
associated with the point is interior. Nevertheless,
these ''point determinations' provide only a sampling
of the surface and one must maintain a distinction be-
tween grid points and the volumes they correspond to.
The surfaces could in principle be determined by evalu-
ating every point on a large 3-dimensional grid, then
selecting boundary points according to known techni-
ques (see [1,5].) However, the amount of calculation
and data involved would prohibit such a determination
on a large grid (say 1000x1000x1000). Instead, the
surface is followed throughout the grid, without calcu-
lating points far from the surface. The interior points
which adjoin exterior points are retained (as proved
boundary points) and their neighbors become candi-
dates for the boundary, to be tested in the next cycle.
The number of function evaluations is reduced consid-
erably by this technique. (Exactly how many function
evaluations depends on the fractal dimension of the
surface in question.) This technique also provides in-
formation about connectivity of the surface: One can
separately calculate and examine different connected
components of a given surface.

An array processor was employed to do floating-
point arithmetic offline. Because the point evaluations
can be done by repeatedly performing the same opera-
tions on lists of real numbers, the array processor is
ideally suited for this type of application. However,
these arithmetic calculations still require much more
computer time than any other aspect of the surface
determination. The array processor was programmed
to input a list of up to 2000 points and output a list of
as many codes, indicating whether each point is inside
or outside the given geometric shape. This process is
most efficiently performed when the number of input
points approaches its maximum. Therefore, in follow-
ing the surface, it was important to deal efficiently with
large stacks, rather than keeping the stacks short.
What is presented here is a systematic way of effective-
ly keeping track of the results of calculations, and en-
suring that most of the computer time involved is spent
on function evaluation, not on manipulation of points.
These methods were applied on an IBM 3033 with a
Floating Point Systems AP190L array processor. Ordi-
narily the function evaluation on the array processor
used more than 90% of the total CPU time.

The basic requirements of the surface determina-
tion are as follows:
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1. Repetition of point evaluations should be
avoided, as this is the most time-consuming operation.

2. The algorithm should make no assumptions
about the extent of the surface; it may be extremely
convoluted (even approaching space filling) or it may
be very smooth.

3. No sorting or comparison of stacks should be
done; all stack manipulations should be linear in com-
plexity, so that there be no penalty for using large
stacks.

The final output of this process is a list of points P
(boundary points) on the grid, satisfying the following:

1. P is inside the shape in question

2. At least one of the neighbors of P is outside
the shape in question.

3. P is connected to one of a set of starting
points via a path which follows the grid and consists
only of boundary points.

Note that the above 3 conditions provide a recur-
sive definition of the desired set of boundary points,
depending only on the mathematical shape in question,
the grid used, and the set of starting points. To deter-
mine all boundary points, maintain a stack of newly-
discovered boundary points, and perform the following
until this stack is exhausted:

1. List all neighbors of newly-discovered
boundary points.

2. Determine which of these neighbors are
interior. Those which are interior are candidates for

the boundary (since they satisfy conditions 1 and 3
above).

3. Check the neighbors of the candidates. If a
candidate has a neighbor which is exterior, the candi-
date is a boundary point, and is listed with the newly-
discovered boundary points.

In order to be precise, one must define the notion
of adjacency which is to be used in determining the
"neighbors" found in steps 1 and 3. It was in fact
useful to use different notions of adjacency, depending
on the fractal characteristics of the surface being inves-
tigated. The notion of adjacency used in step 1 deter-
mines the extent of the surface; therefore surfaces
which contain long, thin strands are more thoroughly
delineated by using a liberal notion of adjacency, for
instance considering cubes which touch only at a cor-
ner to be adjacent. The notion of adjacency used in
step 3 determines how thoroughly the surface is to be
covered. In deciding whether a given interior cube was
on the boundary, it was usually required to share a face
with an exterior cube.

In order to begin the surface determination, one
must specify a starting list of boundary points. (The
choice of starting points will establish which compo-
nents of the surface are to be determined.) The starting
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points can be easily specified by choosing a line seg-
ment which joins the interior and exterior of the given
shape. At least one point on such a segment will be a
boundary point, and can serve as a "seed" for the sur-
face determination.

It should be observed that the names "interior' and
"exterior" are chosen only to distinguish two alterna-
tive properties, not necessarily describing bounded and
unbounded sets. In fact, the algorithm allows one to
follow cither the interior or exterior of the given math-
ematical boundary. There are often interesting qualita-
tive differences between these two sets, as shown in
the illustrations.

Display Methods

The output of the preceding calculation is a sorted
file of grid vertices; typically such a file will contain
over one million points. This list of grid points pro-
vides at best inner and outer limits to the extent of the
surface; at worst a biased sampling of points near the
surface. To each point on the list corresponds a cube
which could be regarded as the primitive for the display
process. However, one only can conclude that the
cube in question intersects the given volume, not that
the cube’s surface coincides with part of the fractal
surface being displayed.

Because the surfaces to be displayed are fractal,
the display techniques were chosen so as to avoid the
customary preference for smoothness. The details one
sees at a given resolution should suggest higher resolu-
tion will reveal more detail. It was therefore consid-
ered inappropriate to model the surfaces with planar or
smooth primitives; the points themselves become the
primitives of the display process. Conceptually the
presence of a point on the list represents only the fact
that a certain portion of 3-space is occupied by some
opaque material; this should not imply the presence of
a smooth surface bounding that opaque material.

The display process is in two stages. In the first
stage, illumination intensities are assigned to each ver-
tex, depending on the relationship of thé vertices to an
imagined light source. During the second stage, an
image is produced, depending on the direction to the
viewer. The first stage is more time-consuming, requir-
ing two passes through the data points. The second,
image-producing stage, involves only one sequential
pass through the data. The second stage may be per-
formed repeatedly, to obtain a series of views of the
object from different angles. The algorithms for both
processes are based on z-buffers; that is, the model is
projected into a two-dimensional buffer in memory, the
projection being performed in such an order so as to
handle shading and hidden surface elimination. Be-
cause of the simplicity of the primitive display ele-
ments, no sorting is required for either illumination and
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display projections. If the data initially is sorted on
increasing model coordinates, then the z-buffer projec-
tion can for most directions be achieved by a forward
or reverse pass through the data. Projection in the
remaining directions can be achieved by a simple res-
tucturing of the initial sort, again done in linear time.
Alternatively, the visible or illuminated surfaces can be
found by determining the distance of each point from
the viewer or light-source at the time of the projection,
retaining closest points. This also is done in linear
time, but may require additional space to retain visible
z-coordinates.

The use of z-buffers makes this an image-space
rather than object-space algorithm; this is not a serious
drawback, because the surfaces are only calculated to a
prespecified accuracy. The primary difficulty encoun-
tered with z-buffer techniques was in determining the
illumination of surfaces which are nearly parallel to the
light direction. This is a situation where some of the
information ordinarily lost in a z-buffer projection
must be recovered. Our solution to this problem was
to regard the surface cubes as somewhat translucent;
cubes immediately behind illuminated cubes receive a
portion of the light of the illuminated ones. This tech-
nique is particularly useful for eliminating staircasing
when the light direction is along one of the grid axes.

Fractal surfaces are not differentiable. This implies
that the surface normal vector at a given point is gen-
erally not defined. In order to simulate light reflec-
tance one can however determine a ''typical" normal
direction at a given point by comparing its coordinates
with those of nearby points. To obtain an approximate
normal vector at a given illuminated point (which has
projected into the z-buffer), the z-coordinates of its
neighbors in the z-buffer are compared. The differ-
ence in z-coordinate between two points divided by
their separation in the z-buffer is used to estimate the
tangent of the angle between the light source and the
surface normal. The average of several such surface-
normal approximations can be used to define the re-
flectivity at a point. The figure below shows how such
a normal vector is calculated:

\
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Points labeled P and Q are projected to a z-buffer
in the direction indicated by parallel arrows. The line
perpendicular to PQ forms an angle theta with the
illumination direction. Cos(8) may be calculated as the
ratio a/c, where a is proportional to the distance be-
tween the projections of P and Q in the z-buffer, b is
the difference in z-coordinates of the two points, and ¢
is the corresponding hypotenuse. Two of these calcula-
tions at right angles determine a normal vector.

The final part of the picture display consists of
projecting the points in the direction of an imagined
viewer, using the intensities determined above to de-
cide how bright a given point will appear. this process
is a straightforward z-buffer algorithm and is per-
formed with an orthogonal projection. In order to
ensure that the visible surfaces completely conceal the
hidden surfaces, individual points in the model may be
projected to several nearby positions in the image z-
buffer. The result is a half-tone picture in which each
visible point in the model produces one or more dots
on the picture.

Illustrations

The illustrations have been chosen as examples of
the diversity of form and texture which result from
these techniques. The first two illustrations show 1-
parameter families of fractals in the complex plane.
Each horizontal slice is the shape in the complex plane
corresponding to choosing one value of the parameter,
and the whole figure shows the effect of changing the
parameter. Shapes in the complex plane upon which
these figures were based were first displayed graphical-
ly by B. Mandelbrot. See plate 187 in [8] for another
illustration of this type. The surfaces in figures 1 and
2 are defined as follows: For each complex number A
of absolute value 1, iterate the transformation T(z) =
A z(1-z). The set of complex numbers z for which the
successive iterates do not tend to infinity defines a
subset of the complex plane. The illustrated 3-d
shapes show how this planar shape varies for A on the
circle |A| = 1. By a change of variables, the shape in
figure 1 is "unwound", producing figure 2. The two
objects were followed on grids of size 6003. Each is
represented by approximately two million points. They
are displayed at resolution 600x800 using two light
sources.

Figures 3 through 6 illustrate some invariant shapes
determined by the iteration of quadratic polynomials in
the four-dimensional quaternions [3]. (See [9] for a
discussion of the mathematics involved in iteration of
rational functions in the quaternions). For our present
purposes, it suffices to observe that quaternion multi-
plication and addition provide a 4-dimensional general-
ization of complex arithmetic, based on vector algebra.
Models in R3 are produced by starting the iteration in a
three dimensional subspace of the quaternions spanned
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by 1, i, and j. The resulting shapes were followed on a
grid of size 12003. They were displayed at resolution
1024x1280 using two light sources.

Figure 3 is defined by iteration of a quadratic po-
lynomial in the quaternions, of the form A z(1-z), with
a complex number A. The parameter A was chosen so
as to obtain an attractive cycle of length 7, using tech-
niques developed in [7]. The shape shown is a con-
nected component of the set of points attracted to that
cycle. The shape is invariant under a 7-fold iteration
of the defining transformation, and is one of an infinite
number of components defined by that invariance.
This component is represented by about 5.6 million
points.

Figure 4 is defined by the iteration of another po-
lynomial of the form A z(1-z). In this case, the shapes
illustrated are different components of the set attracted
to a cycle of length four.

Figure 5 is defined by the iteration of a polynomial
of the form z?+p, with p a complex number chosen so
as to produce an attractive cycle of length 4. The illus-
trated shape is the boundary of the set attracted to that
cycle. Four colors are used to distinguish invariant sets
defined by 4-fold iteration of the transformation.

Figure 6 is defined by the polynomial i(z2+1).
The illustrated shape is one of two components which

together comprise the set of points attracted to a cycle
of length two.
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