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JULIA SETS IN THE QUATERNIONS

ALAN NORTON
IBM T . J . Watson Research Center . Yorktown Heights. NY 10598

Abstract-Recent mathematical work on the dynamics of complex analytic f�nctions has given rise to a
new s�bject matter for comp�ter graphics . The combination of mathematical theory and comp�ter graphics
has res�lted in new insight into the nat�re of some of the simplest of mathematical objects, second-degree
polynomials. Most of that work has foc�sed on the possibilities within the two-dimensional complex plane.
This article shows how these investigations may be extended to higher dimensions, res�lting in fractals that
nat�rally reside in the 4-dimensional q�aternions . Partic�lar attention is paid to the form�la act + b . A
method is given for obtaining vario�s interconnection patterns for the J�lia sets in 4-space, and the res�lts
are displayed in 3-D comp�ter graphics .

Chaos and Graphics

INTRODUCTION
Q�adratic polynomials are �s�ally presented early in
elementary algebra co�rses, and ill�strated �sing a pa-
rabola . One learns how to calc�late roots . t o locate the
foc�s and directrix . Since all parabolas look abo�t the
same, the s�bject is easily treated in one or two lect�res,
followed by generalizations to higher degree polyno-
mials. This s�bject, at least, is one which apt st�dents
can �nderstand completely, and �se as a simple model
for the relationship between algebra and geometry . Or
so it seems .

B�t now look at the pict�res ill�strating this article .
These pict�res are directly derived from q�adratic
polynomials; in fact can be regarded as pict�res ofq�a-
dratic polynomials. These shapes of endless detail are
in many respects more nat�rally associated with the
polynomials than are parabolas . One needs more than
a pen and graph paper to generate s�ch drawings . The
q�adratic mapping reveals its inexha�stible content
only when examined by the comp�ter .

Several st�dies have appeared in recent years dem-
onstrating the dramatic vis�al effects obtainable from
applying two-dimensional comp�ter graphics to com-
plex polynomials. Fascinating as s�ch pict�res are, they
are only slim fragments compared to the three- or fo�r-
dimensional physical reality . Q�adratics do in fact re-
side in higher dimensions, and we present one s�ch
extension in this st�dy .

	

.
We shall show how the 4-dimensional q�aternion

algebra can be �sed to define str�ct�res possessing
complex patterns of infinitely repeating geometric
str�ct�re . We do not have complete control over the
str�ct�re, comparable to the way a sc�lptor can pre-
scribe the topology and text�re of the object being cre-
ated. We can, however, to a limited extent define the
interconnection patterns of these shapes, and will show
how s�ch controls can be exploited .

An �nderlying theme in this st�dy is the presence
of endlessly repeating geometric patterns. The geo-
metric objects revealed thro�gh these techniq�es are
called fractals . and satisfy Mandelbrot's definition [5 ] .
Mandelbrot asserted that fractals are the Geometry of
Nat�re. In the ill�strations of J�lia sets in this article
we see that the �niverse of mathematical shapes does
not differ in that respect from the real world : Typical
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J�lia sets are fractals; only rarely do we enco�nter the
smooth objects of E�clidean geometry .

DYNAMICS IN THE COMPLEX PLANE
Points in a plane can be represented with two real

coordinates . B�t abo�t three cent�ries ago it was dis-
covered that m�ch simplicity and concept�al �nder-
standing is gained by recognizing the pair of real n�m-
bers as a kind of n�mber in its own right, a "complex
n�mber." Instead of the pair (s . I) representing a point
in the plane, the single entity x + yV- I is �sed. This
req�ired introd�ction of a new "imaginary" n�mber,
i = lrI . Unlike real n�mbers, the n�mber i does not
represent distance along a straight line . Instead, i may
be treated as a displacement in a direction perpendic-
�lar to the real n�mber line. Using this new kind of
n�mber, all points in a plane are then regarded as
"complex" n�mbers . The point with coordinates (x,
y) is regarded as the complex n�mber x + ty .

Like real n�mbers, complex n�mbers can be added
and s�btracted, m�ltiplied and divided (except that
we still are not allowed to divide by zero .) The complex
n�mbers contain the real n�mbers as one line (the
"real axis') in the complex plane . The r�les of complex
arithmetic are easily expressed in terms of the arith-
metic of real n�mbers :

The s�m of x + it and v + iii is (x - v) + :(y + � •) .

Their prod�ct is (xv - vw) + i(xw + v�) .

By thinking of points in the plane as complex n�m-
bers, we can manip�late geometry with form�las .
Consider for example a q�adratic polynomial

p(s) = x' - l .

This form�la determines a val�e . p(x), associated with
a n�mbers. It works eq�ally well whether x is a com-
plex or real n�mber. We can regard it as a geometric
r�le that, for each point .: in the plane associates a
point p(_), also in the complex plane .

Complex derivatives
Many of the operations one performs with form�las

make sense whether the form�la is applied to real or
complex n�mbers. One example we shall �se later is
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the notion of a complex derivative of a polynomial .
Derivatives are �s�ally defined (in calc�l�s class) as
the slope of a line tangent to a graph . When we express
that definition as a limit

lim p(x+
h) - p(x)

h-o

	

h

we see that the limit can make sense even if x and h
are complex n�mbers and ifp(x) takes complex val�es .
This derivative of a complex polynomial is then an-
other complex polynomial, and can be comp�ted by
the power r�le:

ax
d ~ = anx'- I .

The mathematical theory of complex analytic f�nc-
tions was developed d�ring the 19th cent�ry . These
f�nctions have complex derivatives (as in the above
limit) where they are defined . They incl�de, for ex-
ample, polynomials and the exponential f�nction, b�t
not the conj�gation f�nction f(x + iy) = (x - iy) .

Geometrically, what makes analytic f�nctions so
special is the fact that they are "conformal mappings."
To explain this, we need to think of form�las as map-
pings, in the sense that a form�la f(x) not only tells
what f does to a point x, it also gives a way of taking
points near x and associating them with points near
f(x). Geometrically, we can think off as stretching
or otherwise distorting a piece of a plane near x as it
pastes it onto the plane off(x) . (This is ill�strated in
Fig. I .)

In this context, conformality means that the map-
ping has a partic�larly nice property: It preserves angles .
If two lines, crossing at x, form an angle 8, then the
mapping f may distort the lines so that they are c�rves
instead of straight lines, b�t the res�lting c�rves still
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meet at the same angle 6 . Complex analytic f�nctions
(and polynomials in partic�lar) have the property of
being conformal everywhere they are defined, except
at the places where the complex derivative f'(x) van-
ishes.

What is dynamics?
The s�bject of dynamics is concerned with what

happens to a physical or geometric system over time,
when it is s�bjected to a force, or �ndergoes some kind
of manip�lation. For example the motion of planets
abo�t the s�n can be modelled as a dynamical system
in which the planets move according to Newton's laws.
These laws provide a set of r�les that one can �se to
comp�te the position and velocity of the planets to-
morrow, if one is given their position and velocity to-
day. With eno�gh effort we co�ld derive a form�la
that wo�ld approximate what the passage of a fixed
time (i.e ., one day) does to the solar system . Similarly,
a complex polynomial p(x) can be regarded as a r�le
for moving points in the complex plane . If an object
is positioned at zo at time t = 0, then z, = p(z o ) will
be its position at time I = 1, p(p(zo )) = p(z,) will be
its position at t = 2, etc . Here of co�rse the r�le is
completely nonphysical, having nothing to do with
Newton's laws.

Dynamics is concerned more with the long-term be-
havior of a dynamical system than the explicit r�le
defining the change from one time to the next. We
wo�ld prefer to know whether the earth will event�ally
fall into the s�n than where the earth will be tomorrow .
Similarly, with a polynomial p(x), one wo�ld like to
�nderstand the limiting effect of "iterating" or com-
posing the polynomial with itself. To establish some
notation, let f"1(x) denote the res�lt of applying (or
composing) the f�nction f(x) n times to the starting
val�e x:

f'"'(x) =f(f( . . .(f(x)) . . .U .

f(B)

f (A)

f(C)

Fig. 1 . Conformal mapping. A complex analytic f�nction may be regarded as a r�le that moves a portion
of the complex plane to another portion . This motion may ca�se some distortion, b�t angles are preserved .



What sort of thing can happen to f'"(zo ) as n be-
comes large? We give some examples, to motivate some
definitions . If f(z) = z2 and we start with zo = 2, it is
easy to comp�te thatf"'(zo ) becomes arbitrarily large,
or converges to infinity- Similarly, taking z o = }, s�c-
cessive iterates rapidly approach zero . In general, if zo
is within a circle of radi�s I of the origin, thenf1 ' ) ( zo )
converges to zero, and it converges to infinity whenever
zo is o�tside that circle. This ill�strates the phenomenon
of "attraction :" Zero is "attractive" in the sense that
points nearby zero are moved closer when the form�la
is applied . Infinity is also said to be attractive in this
context, since complex n�mbers far from the origin
are moved f�rther by the mapping .

There is also a converse notion of " rep�lsion." Con-
sider how the transformation f(x) = x' acts on the
two n�mbers I and 1 .01 . S�ccessive iterations of l do
not change its position ; however, iterating 1.01, we
obtain s�ccessively 1 .0201, 1 .0406 • • , 1 .08 • • .
In fact, every point nearby to I, other than I itself,
moves away from I when the form�la is applied . We
say that I is "rep�lsive" or a "repeller" for the f�nc-
tion f.

Another concept worth defining occ�rs in the above
example . Note that repeated applications of the for-
m�la f do not move the points 0 or 1 . These points
are called "fixed points" off. More generally, it can
occ�r that after several iterations a point ret�rns to its
starting position . To be precise, s�ppose that f'" r (zo)
= zo . Then the k points zo, z, = f(zo ), z 2 =f(z, ), - - -
zk-, = f(zk_z ) are said to form a "cycle of length k,"
or "k-cycle ." A fixed point is then a cycle of length I .

Cycles, like fixed points, can be attractive or rep�l-
sive, depending on whether iterations of the form�la
bring nearby points closer to the cycle, or p�sh them
f�rther away . For an example of a rep�lsive cycle, con-

-1 + iV
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sider the val�es
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. (These val-

�es are c�be roots of I .) It is easy to check, by iterating
nearby points, that this pair forms a rep�lsive 2-cycle
for the form�la x' . The form�la f( x) = x' - t has an
attractive 2-cycle, consisting of the points 0 and -1 .

There is a simple r�le for determining whether a k-
cycle is attractive or rep�lsive, based on the val�e of
the complex derivative. We comp�te the absol�te val�e
of the complex derivative of the iterate f'' ) , and eval-
�ate it any point of the cycle . If the res�lt is less than
I, the cycle is attractive . If it is greater than 1, the cycle
is rep�lsive . If the res�lt is exactly I, the cycle is neither
attractive nor rep�lsive, and will be called "indifferent ."

If a form�la has an attractive cycle, we can ask what
points in the plane are attracted by the cycle. In other
words, what points event�ally get arbitrarily close to
points in the cycle �nder repeated iterations of the for-
m�la. The set of these points- is called the "basin of
attraction" of the cycle, and can be likened to the
drainage basin associated with a depression in the
earth's s�rface .

It is easy to �se a comp�ter to find basins of attrac-
tion . Fig. 2 ill�strates the basin of attraction associated
with the cycle ( 0, - I } for the form�la x' - l . This

J�lia sets in the q�aternions 269

pict�re displays a portion of the complex plane centered
at the origin, of diameter 4 . The red and yellow portions
of the pict�re comprise the basin of attraction to the
cycle. Red corresponds to points that approach 0 on
even iterations, yellow points approach 0 after an odd
n�mber of iterations. The remaining (black) portion
of the pict�re consists of points that are attracted to
infinity .

Invariance
Another concept of some importance in describing

long-term behavior of a dynamical system is that of
"invariance." We say that a set S of complex n�mbers
is "invariant �nder f" if f(S) = S. For example, a
cycle or a fixed point is an invariant set . If an invariant
set also satisfiesf '(S) = S, then we say that S is "do�-
bly invariant ." For example, the point 0 is do�bly in-
variant for the f�nction x', b�t the point 1 is not . The
circle of radi�s I, its interior, and its exterior are also
do�bly invariant sets for x 2 .

What is a J�lia set?
What is perhaps most interesting abo�t Fig . 2 is not

the basin of attraction, or yellow and red portion of
the fig�re b�t rather the bo�ndary between that basin
and the black region. This bo�ndary is known as the
J�lia set (or J�lia-Fato� set) of the form�la x 2 - l .
J�lia sets are named after the mathematician Gaston
J�lia, who in the early 20th cent�ry elaborated many
of their properties . The J�lia set is a geometric object
in the complex plane associated with a form�la ; in this
sense, a pict�re of the form�la. Any polynomial has a
J�lia set, and many other form�las have them, too .
Like the pict�re in Fig . 2, most J�lia sets are fractals (5 ],
displaying an endless cascade of repeated detail .

There are several eq�ally �sef�l definitions of the
J�lia set of a polynomial, two of which we shall present
here beca�se they can be directly translated into com-
p�ter algorithms . For a complete disc�ssion, see [ 1 ] .

1 . The J�lia set is the clos�re of the set of rep�lsive
cycles of the polynomial .

2. The J�lia set is the bo�ndary between the set of
points that are attracted to infinity, and the set of
points that are not attracted to infinity .

How are J�lia sets comp�ted?
Using the above two definitions we provide two easy

algorithms for making comp�ter graphics pict�res of
the J�lia set. An algorithm based on the first definition
can be fo�nd in [6] :

Start with a polynomial p(x) and a starting point zQ
in the complex plane, determine a seq�ence of complex
n�mbers as follows :

I. Given z", find the inverse of p(x) applied to z" ;
i .e ., find the sol�tions x of the eq�ation p(x) = z" .
There will be no more sol�tions than the degree of
the polynomial ; and finding the sol�tions is partic-
�larly easy if p is q�adratic, req�iring a complex
sq�are root .

2. Choose z„ t , randomly from the set of sol�tions .
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The above algorithm prod�ces a seq�ence of points
{ z" [ in the complex plane which converges to the J�lia
set . If many (tho�sands) of the points after the first 20
or so are plotted as separate dots on a screen, they will
be seen to trace o�t a fractal . Fig . 5 was comp�ted
�sing this algorithm .

A second algorithm, based on the second definition,
will more clearly delineate the J�lia set for some poly-
nomials. The object is to identify the J�lia set as the
bo�ndary between points that are attracted to infinity,
and points that do not converge to infinity . For ex-
ample, if the polynomial has an attractive cycle, then
the points that are attracted to the cycle can be rapidly
determined as not converging to infinity . Different
colors can be �sed to disting�ish the two cases, thereby
representing the J�lia set as the bo�ndary between two
colors in a pict�re . To present this algorithm, ass�me
the polynomial p(z) has an attractive cycle consisting
of k points, x,, x2 , ' - - x,, . We shall also need to choose
a "large" n�mber N and a "small" n�mber e. Large
means, in this case. large eno�gh that for I z I > N,
I p(z) I > I z I . In other words, N is large eno�gh that
n�mbers as large as N are all attracted to infinity . Sim-
ilarly a m�st be small eno�gh that if z is within a dis-
tance of x,, then z will event�ally converge to the cycle .
Choosing n�mbers N and t is not diffic�lt, b�t may
occasionally involve some trial and error .

The algorithm consists of eval�ating each point on
a sq�are grid of the same resol�tion as the desired dis-
play device . If a point iterates to infinity, the corre-
sponding pixel is given one color : if the point ends �p
in the cycle the pixel is given another color . The map-
ping between display device and screen coordinates
m�st be chosen so that the desired portion of the com-
plex plane is mapped to the screen .

For each pixel on the display device :

I . Comp�te the complex n�mber z = z o that maps to
the center of the pixel .

2 . Iterate the f�nction (say 50 or more times) as follows

•

	

comp�te the next iterate, z" = p(z"-,) .
•

	

Check if z„ has absol�te val�e greater than N. If
so, terminate the iteration, and color the pixel
appropriately .

• Check if z" is within distance e of x, . If so, ter-
minate the iteration and assign the "other" color
to the pixel,

3. If all 50+ iterations complete witho�t exceeding N,
color the pixel as a point that does not get attracted
to infinity .

There are many variations on this algorithm which
can red�ce the comp�tation, or make the res�lting
pict�res more informative . For example, in Fig. 2 the
points that do not go to infinity are recognized by the
fact that they become close to elements of the cycle .
If a point ends �p in the cycle, the n�mber of iterations
mod�lo the length of the cycle can be �sed to color-
code the vario�s components of the basin of attraction .
This is �sed to obtain the pattern of fo�r colors in Fig .
3 . M�ch of the striking �se of colors in [7] res�lts from

color-coding the n�mber of iterations req�ired to get
close to an attractive cycle .

U 7rc are J�lia sets Jraclals'
First, we provide an informal definition of fractal [ 5 ] .

s�fficient for o�r p�rposes : A fractal is a geometric
shape that possesses detail at all scales of magnification .
In other words. one can magnify a fractal repeatedly .
and more detail will appear with each magnification .
Most b�t not all J�lia sets are fractals : for example x 2
and x 2 - 2 have respectively a circle and straight line
segment as J�lia sets .

The repetitive str�ct�re ofJ�lia sets can be explained
by considering their invariance properties . If x is in
the J�lia set of a f�nctionf, then so isf(x) : conversely,
iff(x) is in the J�lia set off, so is x . (This follows
from either of the above definitions of J�lia set, and
we leave it as an exercise for the reader .)

Now, given that the J�lia set is invariant, s�ppose
there is some feat�re For shape that occ�rs in the J�lia
set. The do�ble invariance of the J�lia set implies that
f( F) . the image of F �nderf, also lies in the J�lia set .
F�rthermore, the conformality of the mapping f im-
plies that f( F) will appear very similar to F .

Repeatedly applying the f�nction f. we see that any
feat�re that occ�rs in the J�lia set will occ�r again and
again, distorted and rotated b�t of similar appearance .
Not only will an infinite n�mber of copies of s�ch fea-
t�res reappear on the J�lia set, b�t they will reappear
in arbitrarily small size, everywhere along the J�lia
set, beca�se the f�nction f is expanding along the
J�lia set.

Many (b�t not all) fractals are self-similar, so that
the fractal contains repeated scaled-down copies of it-
self. The fractals that occ�r as J�lia sets are only ap-
proximately self-similar, in the sense that repeated
str�ct�res will be distorted rather than precise mag-
nifications of the original . This approximate self-sim-
ilarity was proved by S�llivan . (A proof can be fo�nd
in (I] .)

Classification of J�lia sets �sing the Mandelbrot set
Beca�se different q�adratic polynomials give rise to

very different J�lia sets, it is �sef�l to have a classifi-
cation of the different possible shapes that can arise .
This classification is best described with the aid of an-
other comp�ter-generated ill�stration, shown in Fig .
4 . This set, known as the Mandelbrot set (see [6), where
it was first described) provides the mathematical
eq�ivalent of a road map for the space of q�adratic
polynomials . The Mandelbrot set sho�ld be regarded
as a pict�re of the set of all q�adratic polynomials, in
the same sense that a J�lia set is a pict�re of one par-
tic�lar polynomial .

For each complex n�mber c, let f(x) denote the
polynomial xz + c . The Mandelbrot set is defined as
the set of val�es c for which the s�ccessive iterates of
0 �nderf do not converge to infinity . It is the set of
complex n�mbers c s�ch that

lim Ifs" 1 (0)I < cc .



Fig . 2 . This ill�strates the J�lia set of the form�la x' - I,
which has an attractive two cycle . Points colored red are at-
tracted to 0 on odd iterations of the form�la, and points colored
yellow are attracted to 0 on even iterations. The region at-

tracted to infinity is black .

One easy way to comp�te the Mandelbrot set is as
follows :

•

	

For each complex n�mber c on a grid, comp�te the
iterates f (0), f (fr(0) ),

• If the iterate becomes large in absol�te val�e (say
greater than 5) then the point c is o�tside the Man-
delbrot set and is shown white. Otherwise, stop the
iteration after a s�itable n�mber of tries, and display
the corresponding pixel as black .

As with the J�lia set, more information (and more
artistic license) can be obtained by color-coding the
n�mber of iterations �sed to determine the fate of a
given point .

Now the Mandelbrot set works
By looking at where a given complex n�mber c oc-

c�rs relative to the Mandelbrot set, it is possible to
determine the dynamics associated with the form�la
x' + c, as well as to predict general properties of the
J�lia set off . The different types of dynamics that
occ�r when f is iterated are described as follows:

Fig. 3 . This is the J�lia set of the form�la x 1 + . 2809 - .53i .
Them is an attractive fo�r cycle, and the fo�r colors are �sed
to identify the components of the basin of attraction to the
cycle . Compare fig�res 6, 7, 8, and 9 of the q�aternion J�lia

set of the same form�la .

J�lia sets in the q�aternions

Fig . 4 . This ill�strates the Mandelbrot set associated with the
form�la x' - c. The form�la is iterated for vario�s val�es of
c, and the point c is colored black or white depending on
whether or not the iteration remains finite . The val�es of c
designated 2, 3, 4, 5, and 6 determine form�las with attractive

cycles of the respective lengths .

•

	

The white portion of the fig�re, consisting of e's for
which 0 iterates to infinity, corresponds to J�lia sets
which are Cantor sets, totally disconnected fractals.
All points in the complement of the J�lia set are
attracted to infinity . Fig. 5 shows an ill�stration of
this .

•

	

The interior of the black region consists of val�es of
c for which f has an attractive cycle other than in-
finity. The vario�s components of the interior of the
black region correspond to different cycle lengths .
The central (c�sped) component contains c's s�ch
that f has an attractive fixed point. Different com-

re
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Fig. 5 . This ill�strates a totally disconnected Cantor set that
is the J�lia set of a q�adratic polynomial . All points in the
complex plane, except dots colored black, iterate to infinity .
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Why does the Mandelbrot set work?
In order to �nderstand the relevance of the Man-

delbrot set to the dynamics of q�adratic polynomials,
we reconsider its definition . The trajectory of the point
0 �nder repeated applications off determines whether
the point c lies inside or o�tside of the Mandelbrot set .
The significance of the starting point 0 is that it is the
"critical point" off ; that is, the derivative f'(z) van-
ishes at the point z = 0 . The Mandelbrot set can be
regarded as a diagram of the behavior of the critical
point �nder the q�adratic mapping .

Fato� and J�lia were well aware of the significance
of the critical point in classifying the dynamics of it-
eration. A basic res�lt of Fato� (see [I]) is that the
basin of attraction of an attractive cycle always contains
a critical point . Conseq�ently, any attractive cycle for
f can be fo�nd by following the iteration that starts at
0. If that iteration goes to infinity, f can have no at-
tractive cycle other than infinity.

In general, the critical points of a mapping are im-
portant in describing the dynamics . Changes in the
behavior of the dynamical system defined by a form�la
are accompanied by changes in the behavior of critical
points �nder iteration . This general principle can be
applied to many transformations other than q�adratic

ponents correspond to different cyclic str�ct�res, mapping, and we shall soon see its �sef�lness in de-
both in the length of the cycle, and in how the com- scribing the geometric str�ct�res that occ�r in iteration
ponents are arranged .

	

of q�aternion mappings .

Figs . 6, 7, 8, and 9 . These fo�r ill�strations show components
of the J�lia set of x2 + .2809 - .531 in a three-dimensional
s�bspace of the q�aternions . The planar fractal shows the J�lia
set in the complex plane . The different fig�res show how the

fo�r colored regions extend into higher dimensions .

ALkN NORTON

For example, the val�e c = 0, which lies in the
middle of the central shape . The form�la f. is j�st
x2, having as J�lia set the circle of radi�s 1 .

Another example, c = -1, corresponds to the
shape ill�strated in Fig . 2 . In this case the point lies
in the center of the black circle, denoted 2, in the
center. The res�lting 2-cycle is indicated by the al-
ternating colors in Fig. 2 .

In general it is easy to find cycles of any length
j�st by picking a val�e of c from the interior of one
of these components . The cycle length is determined
by the position of the component . Consider for ex-
ample the seq�ence of shapes marked 2, 3, 4, 5, 6
in Fig . 4 . They correspond to cycles of lengths 2, 3,
4, 5 and 6. Using a graphics display with crosshair,
it is easy to discover val�es of c for which the form�la
x2 + c has a desired cycle str�ct�re . Then by com-
p�ting the J�lia set itself, one can disting�ish between
other, more s�btle feat�res of the q�adratic f�nc-
tions.

•

	

The bo�ndary between the black and white portions
of Fig . 4 is perhaps the most significant feat�re of
the Mandelbrot set . Val�es of c along this bo�ndary
are associated with many different (and bea�tif�l)
dynamical systems . Not only are s�ch J�lia sets the
most complex and intricate, b�t the mathematics of
the �nderlying dynamics is itself not completely �n-
derstood . We shall not describe the possibilities here,
b�t refer the reader to [7] and [I ] . The animation
"Dynamics of e1°" [9] ill�strates the transition in
str�ct�re of the J�lia sets that occ�r along that
bo�ndary.



Fig. 10 . This pict�re is associated with the form�la 1 .061x( I
- x) . The planar J�lia set of this form�la is identical with the
J�lia set of x1 + .2809 - .531, ill�strated in Fig . 3 ; except that
it is rotated by 90 degrees. The fo�r colors are �sed to ill�strate
all the components of the q�aternion J�lia set and how they
connect to the planar fractal . The res�lting q�aternion J�lia
set is q�ite different topologically from the one ill�strated in
Figs. 6-10 beca�se of different interconnections res�lting from

the placement of the imaginary axis .

EXTENDING TO HIGHER DIMENSIONS
Given the complexity and bea�ty of J�lia sets and

the Mandelbrot set, it is nat�ral to seek higher dimen-
sional generalizations. This is not only an interesting
mathematical q�estion ; s�ch dynamical systems can
provide �sef�l models for other disciplines, like com-
p�ter graphics and physics.

In the following we show how the dynamics of the
q�adratic mapping gives rise to interesting geometric
str�ct�res in the 4-dimensional q�aternion algebra . We
present these res�lts not to show a completed analysis,
b�t to demonstrate the wide range of possibilities for
comp�ter graphics ill�stration of dynamical systems .

What is a q�aternion?
Q�aternions were discovered in 1843 by the Irish

physicist and mathematician William R . Hamilton[ 2] .
Attempting to define a 3-dimensional m�ltiplication,
he fo�nd it necessary instead to extend to fo�r dimen-
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Fig . 12 . This ill�strates the three-dimensional extension of the
J�lia set of Fig . 2, from the form�la x' - 1 . Note that this is
j�st the three-dimensional fig�re swept o�t by rotating the

J�lia set of Fig. 2 abo�t the real axis.

lions. After this discovery, Hamilton and his contem-
poraries devoted a considerable effort advocating the
application of q�aternions to physics and other disci-
plines[4] .

There are several reasons for elevating q�aternions
above the stat�s of "a mathematical c�riosity ." For
example, the real n�mbers, the complex n�mbers, and
the q�aternions are now known (by a theorem of H�r-
witz) to be the only E�clidean spaces in which we can
perform addition, s�btraction, m�ltiplication, and di-
vision (by nonzero elements) . The standard vector
operators (dot and cross prod�cts) are nat�rally
embedded in the m�ltiplication of q�aternions . The
dynamics of motion in 3-space is thereby easily ex-
pressible in terms of q�aternion operation . This rela-
tionship implies comp�tational advantages in �sing
q�aternions to express 3-D spatial manip�lation
(see [10]) .

We can describe q�aternions as an extension of the
complex plane, comparable to the previo�s disc�ssion
of complex n�mbers as an extension of the real n�mber
line . Complex n�mbers provide an extension of the
notion of "n�mber" to permit �s to consider n�mbers
as two-dimensional q�antities . In other words, complex
n�mbers are j�st a set of r�les for m�ltiplying and
adding points in two dimensions. Similarly, q�ater-
nions may be regarded as a way of extending the notion
of "n�mber" to fo�r dimensions : The r�les of q�ater-
nion m�ltiplication and addition provide a way of
doing arithmetic on fo�r-dimensional q�antities .

To explicitly define q�aternion m�ltiplication, we
represent points in fo�r dimensions in the form :

Q=a0 +a,i+a2)+a3k

where i, j, k are (like the imaginary n�mber i) �nit
vectors in three orthogonal directions, perpendic�lar
to the real x-axis .

To add or m�ltiply two q�aternions, we treat them
as polynomials in i, j, k, b�t �se the following r�les
to deal with prod�cts:

Fig . 11 . This shape is also associated with a rotation of the
J�lia set of Fig. 3, in this case a rotation of abo�t 30 degrees .
The form�la is (2. + 1 .061)x( I - x) . Note that the intercon-
nection pattern of loops differs from the pattern in Figs .

6-10 .

i'=j2=k2=-I ;

ij= -ji=k; jk= -kj=i; ki=-ik=j .
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Figs . 13, 14, and 15 . These show the res�lt when a 90 degree
rotation is applied to the form�la of Fig. 2, res�lting in i(x'
+ I ) . No longer is the q�aternion J�lia set simply a rotation
of the planar J�lia set . Figs. 14 and 15 ill�strate the extensions
of the red and yellow components into three dimensions. Fig.
16 ill�strates the combination of both red and yellow, showing
how the pair of shapes is linked together infinitely many times .

We note that, since for example ij = -ji, the m�l-
tiplication r�le for q�aternion is noncomm�tative ; the
res�lt of m�ltiplying two q�aternions depends on their
order. This greatly complicates the r�les for doing al-
gebra with q�aternions.

Analogo�s to the absol�te val�e ofa complex n�m-
ber, we have the "norm," defined by :

QI'=a0+a2+a2+ a3 .

This eq�als the sq�ared distance from Q to the origin
in fo�r-space .

Q�aternion polynomials
Note that if we identify the q�aternion i with the

complex n�mber i, then the complex plane can be
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regarded as sit�ated inside the q�aternions . This makes
it possible for �s to consider any complex polynomial
as a polynomial over the q�aternions as well . Expres-
sions like :

ax' +bx+c

are then polynomials . However, the noncomm�tativity
of the q�aternions implies that many polynomials
cannot be so simply described . For example, �nless
the coefficients a and b are real, the above polynomial
is not eq�al to

nor

nor

etc .
For the p�rposes of this article, we shall consider

only a small class of s�ch q�adratic polynomials, those
expressible in the form ax' + b, where a and b are
complex n�mbers . We shall see that even this class of
polynomials introd�ces a wealth of str�ct�re not seen
in the complex q�adratic mapping .

What is a J�lia set of a q�aternion polynomial?
We begin with the observation that a q�aternion

polynomial can be �sed to define a dynamical system
on the q�aternions : If p(z) is a q�aternion polynomial,
then for any q�atemion q, p(q) is another q�aternion .
With the aid of a comp�ter, q�aternion polynomials
can be easily iterated, to eval�ate the long-term be-
havior. We can still speak of attractive and rep�lsive
cycles, basins of attraction and the like, where the no-
tion of complex n�mber is replaced by q�aternion .

We shall generalize the (second) definition of J�lia
sets for complex polynomials: The J�lia set of a poly-
nomial p(z) is the bo�ndary of the set of q�aternions
q s�ch that p 1 'I(q) converges to infinity as n becomes
large . There is another definition of more generality,
which we shall provide in the appendix, b�t for the
p�rposes of comp�ting the shapes in this article, this
one definition will s�ffice .

Do q�aternion J�lia sets extend beyond the complex
plane?

Consider a complex polynomial p(z) . It will have
a J�lia set J in the complex plane, and J will necessarily
be contained in the q�aternion J�lia set of p(z) . B�t
Jco�ld in fact be the entire J�lia set in the q�aternions
as well. In other words, extending to the q�aternions
co�ld provide �s with nothing new . Fort�nately, some
J�lia sets can easily be seen to extend beyond the com-
plex plane, forming tr�ly 4-dimensional objects .



Fig . 16 . This is associated with the form�la (0 .617
+ 0 .774i)x( I - x). The repeated pattern of holes in this shape
res�lts when the imaginary axis intersects the planar J�lia set

m�ltiple times.

Consider the polynomial p(z) = axz + b, where a
and b are complex n�mbers, and s�ppose f�rthermore
that p(z) has an attractive cycle in the complex plane .
That means there is an area in the complex plane of
points z s�ch that pt" 1 (z) converges into the cycle . If
we show that other points o�tside the complex plane
are also attracted into the cycle, that will imply that
the domain of attraction to the cycle, as well as the
J�lia set, extend beyond the complex plane .

This is in fact tr�e, and a proof will be presented in
the appendix . Generally the polynomials of the form

Fig. 17 . An ill�stration of(-0.6 + I_04i)x( I - x), associated
with a fo�r-cycle. The long strands res�lt from choosing the
imaginary axis to cross m�ltiple components of the planar

J�lia set .
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Fig . 18 . This q�atemionic J�lia set is associated with the c�bic
polynomial, x' + (0 .596 +0 .161 i), showing a three-fold pat-

tern res�lting from the sing�larity of the c�bic mapping .

ax' + b do have J�lia sets that extend, altho�gh other
polynomials, like ax' + bx, do not share this property .

How we comp�te and vis�alize a J�lia set in the q�a-
ternions

Techniq�es for comp�ting and viewing q�aternion
J�lia sets were presented in [81 . We shall briefly review
the methods �sed . The first problem is to model the
J�lia set in s�ch a way as to be tractable for 3D com-
p�ter graphics. The second problem is to constr�ct a
3D image that conveys the fractal nat�re of the object .

How 4-dimensional q�aternionic J�lia sets can be
comp�ted in three dimensions

The q�aternionic J�lia set as defined is a s�bset of
4-space, and s�ch sets can in general only be sampled,
not f�lly exhibited in one 3D pict�re . However, in the
partic�lar case that the polynomial has complex coef-

Fig . 19 . A three-dimensional slice of a Mandelbrot set of x 2
- c, in the q�aternions .
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ficients we can �se certain symmetries to red�ce the
dimension of the problem . Consider a three dimen-
sional s�bspace of the q�aternions that we obtain by
adjoining to the complex plane any q�aternion q that
lies in the plane ofj and k . The fo�r dimensional J�lia
set intersects this three-dimensional space with a set
J„ that depends on the q chosen. In fact, the sets Jy
are congr�ent (i .e ., of identical geometric shape) re-
gardless of the choice of q . This means that, in order
to completely �nderstand s�ch 4-dimensional J�lia
sets, we need only comp�te their intersection in one
3-dimensional space containing the complex plane . For
example, we can �se the space spanned by l, i, j .

Comp�ting the 3D J�lia set
In theory these co�ld be comp�ted by the same sim-

ple algorithm we presented above for complex J�lia
sets. The polynomial co�ld be iterated, starting with
each point on a 3D grid, determining for each s�ch
grid point whether the corresponding q�aternion it-
erates to infinity . In practice, that method is intractable,
req�iring eval�ation of billions of grid points to obtain
moderately high-resol�tion pict�res .

To comp�te ill�strations for this article, the amo�nt
of comp�tation is s�bstantially red�ced by only com-
p�ting bo�ndary points, rather than eval�ating every
vertex on the grid. The algorithm follows the bo�ndary
of the basin of attraction for a cycle, wherever the
bo�ndary may lead, tracking it thro�gh a 3-dimen-
sional grid. Points far from the bo�ndary are never
eval�ated .

By selectively following vario�s components of the
basin of attraction, it is possible to determine how these
components are connected, witho�t determining the
whole J�lia set . Figs . 6-9 show different components
of the basin of attraction to the fo�r-cycle associated
with p(x) = x 2 + (0.2809 - 0.53i) . By comp�ting
and viewing them separately we determine how they
are interconnected .

Making pict�res of3D Jractals
Once the J�lia set has been comp�ted, as a set of

vertices in a three-dimensional grid, a second com-
p�tation is req�ired to prod�ce a two-dimensional im-
age, s�itable for raster display . Beca�se of the fractal
nat�re of the s�rface it is important to present the image
in a manner that conveys information abo�t s�rface
text�re . When we view real physical objects, we �n-
derstand the three-dimensional s�rface str�ct�re by
noticing shadows and shading on the s�rfaces . Similar
vis�al c�es m�st be generated by the comp�ter if we
are to perceive the s�rface str�ct�re .

In the images presented here, we sim�late the s�rface
ill�mination by a "z-b�ffer" algorithm [ 8 ] : All s�rface
elements (i .e., grid points) are projected into a depth
b�ffer to determine the element closest to the light
so�rce. Only s�rfaces visible to the light so�rce receive
ill�mination . Only after the ill�mination is complete,
and a brightness val�e is known for each s�rface ele-
ment, is the act�al image comp�ted . This is done
thro�gh another z-b�ffer projection to the viewer .
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Interconnections and loops in J�lia sets
The images of q�aternionic J�lia sets, res�lting from

the above comp�tation, reveal a s�rprising wealth of
detail, not obvio�sly ded�cible from the J�lia sets in
the complex plane . Perhaps the most striking feat�res
of these shapes are the long strands or loops that in-
terconnect different portions of the complex J�lia set .

Consider for example the shape depicted in Fig. 6 .
This shows the complex J�lia set as a planar slice
thro�gh the q�aternionic J�lia set. Only one compo-
nent of the basin of attraction to the fo�r-cycle has
been followed into the q�aternions . We see how some
of the planar components (colored yellow) become
interconnected in three dimensions, and others do not .

We can alter the loop interconnection pattern (and
therefore the q�aternionic J�lia set) witho�t changing
the complex planar J�lia set . For any angle 0, the for-
m�la e'ax 2 + e- i0c defines a J�lia set in the complex
plane that is congr�ent to the J�lia set of x 2 + c. This
j�st rotates the J�lia set of x 2 + c by the angle B abo�t
the origin in the complex plane. This change of the
form�la does more than j�st a rotation in the q�ater-
nions, res�lting in a change in the topological str�ct�re
of the J�lia set . See for example Figs. 10 and I t, ill�s-
trating the q�aternionic J�lia sets that res�lt when the

angle 0 is, respectively,
2
and

6
radians.

We shall show how one can predict these intercon-
nections, and provide a mechanism for obtaining a set
with desired connections . To explain the interconnec-
tion patterns it is necessary to disc�ss the sq�aring
mapping p(x) = x 2 in terms of how it acts on the 4-
dimensional space of q�aternions .

The sq�aring mapping and its critical set in the q�a-
ternions

Recall first how the sq�aring f�nction acts on the
complex plane. If we represent a complex n�mber
in polar coordinates, z = re ie , then its sq�are is z 2
= r2 e 2t" . Sq�aring res�lts in a do�bling of the polar
angle, so that the mapping wraps the plane twice
aro�nd the origin . Sq�aring is a two-to-one mapping
except at the single critical point, 0, which is mapped
to itself.

Similarly, in the q�aternions, the sq�aring map is
�s�ally a two-to-one map : A q�aternion and its neg-
ative have the same sq�are . However, there is a m�ch
larger critical set, where the mapping fails to be two-
to-one. Recall from the definition of q�aternion m�l-
tiplication that i 2

=j2 = k 2 = - I . This shows that -1,
at least, has more than two sq�are roots . In fact, there
is an entire two-dimensional sphere of q�aternions q
s�ch that q 2 = - 1 ; namely q can be any norm-one
q�aternion with zero real part .

The critical set of the q�aternion polynomial axe
+ b is precisely the set of q�aternions of zero real part .
The above examples ill�strate the fact that the q�ater-
nion sq�aring map fails to be two-to-one precisely on
that set of q�aternions of zero real part; the sq�are of
any s�ch q�aternion lies on the negative real axis .



We describe the sq�aring mapping as follows : Let
U be the set of q�aternions with positive real part, and
-U those with negative real part . Under a sq�aring
operation, both U and -U are mapped onto the com-
plement of the negative real axis. Every q�atemion,
except those on the negative real axis . has exactly two
sq�are roots, one in U and one in -U . The bo�ndary
of U (the q�aternions with zero real part) is folded
onto the negative real axis, taking all points of the
bo�ndary of radi�s r to the negative real n�mber -r= .

Collapsing of two-spheres
Note that the inverse �nder the sq�aring map of any

negative real n�mber is a two-dimensional sphere, so
that the action of the mapping is to collapse s�ch
spheres to points . This "collapse of 2-spheres" has
conseq�ences in the geometry of shapes invariant �nder
a sq�aring operation. S�ppose a set S is invariant �nder
the polynomial ax' + b . If a point q of S lies in the
set which is collapsed to a point �nder the sq�aring,
then invariance of S implies that the entire collapsing
2-sphere containing q lies in S . Since the J�lia set is
an example of an invariant set, this implies the exis-
tence of n�mero�s 2-spheres in the J�lia set, if the
J�lia set crosses the set of q�aternions with zero real
part .

The loops in the 3-dimensional shapes pict�red here
can be explained by this phenomenon . The 2-spheres
in the J�lia set correspond to I-spheres (loops) in the
3-dimensional slices of the J�lia set that we are dis-
playing . The loops that are visible in the ill�strations
res�lt from intersections between the J�lia set in the
complex plane and the imaginary axis : If s�ch an in-
tersection occ�rs at a point P in the complex plane,
then there is a loop in the 3D shape, connecting P and
- P in a circle . Once one s�ch loop L exists, there will
occ�r in the J�lia set an infinite cascade of other loops,
namelyf-'(L),f-'(f-'(L))	etc .

How can we determine the topology of a q�aternionic
J�lia set?

The disc�ssion above gives a recipe for constr�cting
loops in the q�atemionic J�lia set . More generally, we
can design J�lia sets with vario�s interconnection pat-
terns .

Consider again the form�la f = x 2 + c, having
complex planar J�lia set JJ , and s�ppose that J, has an
attractive cycle, so that J, is the bo�ndary between the
points ( in the basin of attraction) that are attracted to
the cycle, and the points attracted to infinity . If two
components of the planar basin of attraction are located
diametrically opposite, we can modify the form�la to
ca�se those components to be interconnected by a loop
in the q�aternions.

This is done as follows : Choose a line thro�gh the
origin that intersects both the opposite components .
Let 8 be the angle of rotation (clockwise) between the
positives-axis and the line . The form�la to be iterated
in the q�aternions is then e'ax2 + e-'e . This form�la
then has the same complex planar J�lia set as f, . except
that it is rotated by the angle 0 abo�t the origin . In the

J�lia sets in the q�aternions

	

277

q�aternions . however, the two components to be con-
nected now lie on the imaginary axis, so there will be
a loop (more precisely, a two-sphere in fo�r-space) in
the q�aternion basin of attraction, intersecting and
connecting them both .

In some instances, not only one loop, b�t an infinite
cascade of interconnected loops are created by this
process. S�ppose for example that a component of the
2-D basin of attraction that intersects the loop contains
a point of the attractive cycle (not j�st a preimage of
the cyclic point) . The connected 4-dimensional com-
ponent of that cyclic point will then be an invariant
set �nder the mapping f The invariance of this com-
ponent implies that it will contain an infinite n�mber
of loops, preimages of the starting loop .

One final example to ill�strate this techniq�e . We
have seen already (in Fig . 2) the complex planar J�lia
set of x 1 - I . When comp�ted in the q�aternions Fig .
12 res�lts, a s�rface of revol�tion abo�t the .v axis . The
only interconnections are those introd�ced by the
components on the imaginary axis, and all ofthe loops
are simple rings abo�t the x axis .

Instead, let �s rotate the complex J�lia set by 90
degrees. obtaining the form�la 1(S' + I ) . The com-
ponents of the basin of attraction, formerly sit�ated
along the real axis at -I and +1, are now along the
imaginary axis at +i and -i . This ca�ses the compo-
nent containing -i and its opposite, the component
containing i, to become connected in the q�aternions .
By considering the preimages of this pair (these are
necessarily connected as well), it is not diffic�lt to show
that all of the q�aternionic basin of attraction becomes
divided intoj�st two connected components, ill�strated
in Figs . 13 and l4 . The red component consists of
points attracted to 0 on odd iterations, and the yellow
points are attracted to 0 on even iterations . These two
components fit together (and intertwine) witho�t
overlap, as ill�strated in Fig . l5 .

Other directions
We have only presented some of the simplest geo-

metric manip�lations that can be imposed on the q�a-
ternion J�lia sets . Figs. 16-18 ill�strate some of the
f�rther directions that one can explore . These depict
the form�las (0 .617 + 0.774i)x( I - .v), (-0 .6
+ L04i)x( I - x), and v' + (0596 + 0.2611) . re-
spectively . Fig . 16 shows that, by caref�l placement of
the critical set, it is possible to ca�se repeating patterns
of holes in the J�lia set ( rather than repeating patterns
of interconnectivity) . Fig. 17 demonstrates how long
strands in the q�aternionic J�lia set can be ind�ced
by appropriate manip�lation of a "stringy" J�lia set
in the complex plane . Fig . 18 shows the J�lia set of a
c�bic polynomial, ill�strating that the critical set of
higher-degree polynomials can similarly be manip�-
lated .

bfandelbrot sets in higher dimensions
Implicit in the above disc�ssion (b�t not proved

here) is a method for describing the str�ct�re of q�a-
ternionic J�lia sets for q�adratics of the form a .v 2
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+ b, with a and b complex n�mbers. That str�ct�re
can be derived from a knowledge of the planar J�lia
set together with a parameter 9. determining how the
imaginary axis (and therefore the critical set) intersects
the planar J�lia set. A three-dimensional space (the
planar Mandelbrot set, together with 9) is req�ired to
parameterize these dynamical systems. There is a space
that serves as Mandelbrot set for these f�nctions, clas-
sifying the dynamics that occ�rs in the q�aternions .
Unfort�nately, that space can be embedded only in
fo�r dimensions, so we can only show three-dimen-
sional slices as exhibited in Fig . 19. This Mandelbrot
set can be identified with the bo�ndary of the set of
pairs of complex n�mbers (z, c) s�ch that f"t(z) re-
mains bo�nded as n -. co . The slice of this shape in
Fig. 19 is the s�bset defined by restricting c to val�es
on the bo�ndary of the central component of the Man-
delbrot set.
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APPENDIX
In this section we provide a mathematical j�stification for

some of the statements in the paper . The mathematical level
of this disc�ssion ass�mes �nderstanding of advanced calc�l�s .

Formal definition of J�lia sets
The �s�al definition of J�lia set is different than the ones

we have �sed in this article. We begin by recalling the notion

of eq�icontin�ity : A set of f�nctions if,', is said to be eq�i-
contin�o�s at a point x if for any constant 6 there is an a s�ch
that for every i

If(x+h)-f(x)I <6

whenever I h I < e .

This condition is stronger than saying that all the f�rctions
f are contin�o�s at x, beca�se it req�ires the same a to work
for all the f�nctions. If all the derivatives of the f�nctions f,
are bo�nded by the same constant, then the set of f�nctions
is eq�icontin�o�s.

The J�lia set of a complex f�nction f(x) is the set of complex
n�mbers z s�ch that the set of all iterates off, if(')), is not
eq�icontin�o�s at z . For q�aternion f�nctions we take the
same definition, replacing absol�te val�es in the above state-
ment with the q�atemion norm .

This definition does not necessarily coincide with the one
we �sed above, �nless some restrictions are placed on the
f�nctionsf. If f is a complex polynomial then Mantel's theo-
rem can be �sed to show the eq�ivalence (see [I ]) . If f is a
q�aternion polynomial the eq�ivalence is not clear . It may
occ�r that for some q�aternion polynomials the bo�ndary of
the set of points attracted to infinity is a proper s�bset of the
J�lia set, altho�gh this has not been observed .

Derivatives ofq�aternion polynomials
To reason abo�t attraction and rep�lsion in the q�atcmions

it is �sef�l to have a means of comp�ting derivatives . Beca�se
q�aternion polynomials are mappings on fo�r-dimensional
space, their derivatives cannot be represented simply as a n�-
merical val�e . The derivative of s�ch a f�nction f(x) at a
point x m�st be regarded instead as the Jacobian matrix, or
the linear transformation that best approximates the poly-
nomial near the point x . In other words, the derivative T of
f at x is a linear transformation s�ch that fix + y) is ap-
proximately eq�al to f(x) + T(y) for y near 0.

An easy way of representing this linear transformation is
to specify what it does to a q�aternion y . The derivative of a
polynomial is the s�m of the derivatives of the monomials in
it, so it is eno�gh to differentiate monomials . The derivative
of a monomial, eval�ated at y, is the s�m of all the monomials
that are each obtained by replacing one occ�rrence of x by
the val�e y . Some examples : The derivative of xz at a q�a-
ternion x is the linear transformation that takes a q�atemion
y to the q�atemion xy + yx . The derivative of x' is the trans-
formation whose val�e at y is x 2y + xyx + yxt.

Attractive cycles in the q�aternions
W e can �se the above form�lation of the Jacobian derivative

to show that attractive cycles for complex polynomials of the
form ax=+ b extend to be attractive in fo�r dimensions, im-
plying that the q�aternion J�lia sets of s�ch polynomials are
nontrivial extensions of their complex planar co�nterparts . It
s�ffices to consider an attractive fixed point p ; cycles admit a
similar proof. Ifp is an attractive fixed point, then we know
the absol�te val�e of the complex derivative satisfies I f'(p) I
< 1 . To show that p is attractive in the q�aternions, we need
to know that Jacobian matrix of f at p, as a linear transfor-
mation, has norm less than one . The Jacobian of ax' + b,
applied at p to a q�aternion y has val�e a(py + yp) . Using
the m�ltiplicativity of the q�aternion norm, we see that the
norm is at most 21 a I I p I I yl . Since 21 a I I p l is the absol�te
val�e of the complex derivative of f at p, we concl�de that
the Jacobian matrix does in fact have norm less than one .
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