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Abstract—Recent mathematical work on the dynamics of complex anabytic functions has given rise to a
new subject matter for computer graphics. The combination of mathematical theory and computer graphics
has resulted in new insight into the nature of some of the simplest of mathematical objects. second-degree
polynamials. Most of that work has focused on the possibilities within the two-dimensional complex plane.
This article shows how these investigations mav be extended to higher dimensions. resulting in fractals that
naturally reside in the 4-dimensional quaternions. Particular attention is paid to the formula ax* + b, A
method is given for obtaining various interconnection patterns for the Julia sets in 4-space. and the resulis

are displayed in 3-D computer graphics.

INTRODUCTION
Quadratic polynomials are usually presented early in
elementary algebra courses, and illustrated using a pa-
rabola. One learms how to calculate roots. to locate the
focus and directrix. Since all parabolas look about the
same, the subject is easily treated in one or two lectures,
followed by generalizations to higher degree polyno-
mials. This subject, at least, is one which apt students
can understand completely, and use as a simple model
for the relationship between algebra and geometry, Or
50 it seems.

But now look at the pictures iltustrating this article.
These pictures are directly derived from quadratic
polynomials: in fact can be regarded as pictures ofqua-
dratic polynomials. These shapes of endless detail are
in many respects more naturally associated with the
pelynomials than are parabolas. One needs more than
a pen and graph paper to generate such drawings. The
quadratic mapping reveals its inexhaustible content
only when examined by the computer.

Several studies have appeared in recent years dem-
onstrating the dramatic visual effects obtainable from
applying two-dimensional computer graphics to com-
plex polynomuials. Fascinating as such pictures are, they
are only siim fragments compared to the three- or four-
dimensional physical reality. Quadratics do in fact re-
side in higher dimensions, and we present one such
extension in this study. .

We shall show how the 4-dimensional quaternion
algebra can be used to define structures possessing
complex patterns of infinitely repeating geometric
structure. We do not have complete control over the
structure, comparabie to the way a sculptor can pre-
scribe the topology and texture of the object being cre-
ated. We can, however, to a limijted extent define the
interconnection patterns of these shapes, and will show
how such controls can be exploited,

An underlying theme in this study is the presence
of endlessly repeating geometric patterns. The geo-
metric objects revealed through these techniques are
called fractals. and satisfy Mandelbrot's definition[ 5].
Mandelbrot asserted that fractals are the Geometry of
Nature. In the illustrations of Julia sets in this article
we see that the universe of mathematical shapes does
not differ in that respect from the real world: Tvpical
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Julia sets are fractals; only rarely do we encounter the
smooth objects of Euclidean geometry.,

DYNAMICS [N THE COMPLEX PLANE

Points in a plane can be represented with two real
coordinates. But about three centuries ago it was dis-
covered that much simplicity and conceptual under-
standing is gained by recognizing the pair of real num-
bers as a kind of number in its own right, a “complex
number.” Instead of the pair (x. 1) representing a point
in the plane. the single entity x + }'V———l- is used. This
required introduction of a new “imaginary” number,
i = V=1. Unlike real numbers. the number does not
represent distance along a straight line. Instead, / may
be treated as a displacement in a direction perpendic-
ular to the real number line. Using this new kind of
number, all points in a plane are then regarded as
“complex” numbers. The poini with coordinates (x,
¥) is regarded as the complex number x + jy.

Like real numbers, complex numbers can be added
and subtracted, multiplied and divided (except that
we still are not ailowed to divide by zero.) The complex
numbers contain the real numbers as one line (the
“real axis™) in the complex plane. The rules of complex
anthmetic are easily expressed in terms of the arith-
metic of real numbers:

Thesumof X + iy and v + wis{(x~ )+ {{} + w).
Their product is (xy — tw) + i(xw + yu).

By thinking of points in the plane as complex num-
bers, we can manipulate geometry with formulas.
Consider for example a quadratic polvnomial

plxy=x*—1,

This formula determines a value, p(x). associated with
a number x. It works equally well whether x is a com-
plex or real number. We can regard it as a geometric
rule that, for each point : in the plane associates a
point p(z). also in the complex plane.

Complex derivatives

Many of the operations one performs with formulas
make sense whether the formula is applied to real or
complex numbers. One example we shall use later is
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the notion of a complex derivative of 2 polynomial.
Derivatives are usually defined (in calculus class) as
the slope of a line tangent to a graph. When we express
that definition as a limit

i plx+ k) —plx)
m--—-—
h—{} h

we see that the limit can make sense even if x and k&
are complex numbers and if p{x) takes complex values.
This derivative of a complex polynomial is then an-
other complex polynomial, and can be computed by
the power rule:

The mathematical theory of complex analytic func-
tions was developed during the 19th century. These
functions have complex derivatives (as in the above
limit) where they are defined. They include, for ex-
ample, polynomials and the exponential function, but
not the conjugation function f{ x + iv) = (x — iy).

Geometrically, what makes analytic functions so
special is the fact that they are “‘conformal mappings.”
To explain this, we need to think of formulas as map-
pings, in the sense that a formula /{ x) not only tells
what f does to a point x, it also gives a way of taking
points near x and associating them with points near
J{x). Geometrically, we can think of f as stretching
or otherwise distorting a piece of a plane near x as it
pastes it onto the plane of f{ x). ( This is illustrated in
Fig. 1)

In this context, conformality means that the map-
ping has a particularly nice property: It preserves angles.
If two lines, crossing at x, form an angle 8, then the
mapping f may distort the lines so that they are curves
instead of straight lines, but the resulting curves still

6 <)

meet at the same angle ¢, Complex analytic functions
(and polynomials in particular} have the propertv of
being conformal everywhere they are defined, except
at the places where the compiex derivative f'(x} van-
ishes.

What is dvnamics?

The subject of dynamics is concerned with what
happens to a physical or geometric system over time,
when it is subjected to a force, or undergoes some kind
of manipulation. For example the motion of planets
about the sun can be modelled as a dynamical system
in which the planets move according to Newton's laws.
These laws provide a set of rules that one can use to
compute the position and velocity of the planets to-
morrow, if one is given their position and velocity to-
day. With enough effort we could derive a formula
that would approximate what the passage of a fixed
time (i.e., one day) does to the solar system, Similarly,
a complex polynomial p{x) can be regarded as a rule
for moving points in the complex plane. If an object
is positioned at zq at time ¢ = G, then 2, = p(zy) will
be its position at time ¢ = |, p{p(2)} = p{z,} will be
its position at ¢ = 2, etc. Here of course the rule is
completely nonphysical, having nothing to do with
Newton’'s laws,

Dynamics is concerned more with the long-term be-
havior of a dynamical system than the explicit rule
defining the change from ong time to the next, We
would prefer to know whether the earth will eventuaily
fall into the sun than where the earth will be tomorrow.
Similarly, with a polynomial p(x), one would like to
understand the limiting effect of “iterating” or com-
posing the polynomial with itself. To establish some
notation, let /' x) denote the result of applying (or
composing ) the function f{ x) » times to the starting
value x:

Sy = UG (fx))e ).

fB)

[

1
f1©)

Fig. 1. Conformal mapping. A complex analytic function may be regarded as a rule that moves a portion
of the complex plane to another portion. This motion may cause some distortion, but angles are preserved.
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What sort of thing can happen to f"(z,) as n be-
comes large? We give some examples, (¢ motivate some
definitions. If f(z)} = z? and we start with z, = 2, it is
easy to compute that /*™{ z,) becomes arbitrarily large,
or converges to infinity. Similarly, taking zy = 4, suc-
cessive tterates rapidly approach zero, In general, if zp
is within a circle of radius | of the origin, then /**{ z,)
converges to zero, and it converges to infinity whenever
Zy is outside that circle. This illustrates the phenomenon
of “attraction:” Zero is “‘attractive” in the sense that
points nearby zero are moved closer when the formula
is applied. Infinity is also said to be attractive in this
context, since complex numbers far from the origin
are moved further by the mapping.

There is also a converse notion of “repulsion.” Con-
sider how the transformation f{ x) = x? acts on the
two numbers 1 and 1.01. Successive iterations of 1 do
not change its position; however, iterating 1.0, we
obtain successively 1.0201, 1.0406 - -+ | 108 + .
In fact, every point nearby to |, other than | itself,
moves away from | when the formula is applied. We
say that 1 is “repulsive” or a “repeller” for the func-
tion f.

Another concept worth defining occurs in the abave
example, Note that repeated applications of the for-
mula f do not move the points 0 or 1. These points
are called “fixed points” of f. More generally, it can
occur that after several iterations a point returns to its
starting position. To be precise, suppose that f*(z)
= z5. Then the k points 25, 2, = f(2), 22 = f(z,}, « - -
Zr-1 = f{ze—3) are said to form a “cycle of length &,”
or “k-cycle.” A fixed point is then a cycle of length 1.

Cycles, like fixed points, can be attractive or repul-
sive, depending on whether iterations of the formula
bring nearby points closer to the cycle, or push them
further away. For an example of a repulsive cycle, con-
sider the values ! : V3 and ! 3 iV3 . { These val-
ues are cube roots of 1.) It is easy to check, by iterating
nearby points, that this pair forms a repulsive 2-cvcle
for the formula x%. The formula f{x)=x?— | hasan
attractive 2-cycle, consisting of the points 0 and —1.

There is a simple rule for determining whether a &-
cycle is attractive or repulsive, based on the value of
the complex derivative. We compute the absolute value
of the complex derivative of the iterate /%, and eval-
uate it any point of the cycle. If the result is less than
1, the cycle is attractive, If it is greater than I, the cycle
is repulsive. If the result is exactly 1, the cycle is neither
attractive nor repulsive, and will be catled “indifferent.”

If a formula has an attractive cycle, we can ask what
points in the plane are attracted by the cycle. In other
words, what points eventually get arbitrarily close to
points in the cycle under repeated iterations of the for-
mula. The set of these points.is called the “basin of
attraction” of the cycle, and can be likened to the
drainage basin associated with a depression in the
earth’s surface.

It is easy to use a camputer to find basins of attrac-
tion, Fig. 2 illustrates the basin of attraction associated
with the cycle {0, —1} for the formula x* — |, This
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picture displays a portion of the complex plane centered
at the origin, of diameter 4. The red and yellow portions
of the picture comprise the basin of attraction to the
cycle. Red corresponds to points that approach 0 on
even iterations, yellow points approach  after an odd
number of iterations. The remaining (black) portion
of the picture consists of points that are attracted to
infimity.

Invariance

Another concept of some importance in describing
long-term behavior of a dynamical system is that of
“invariance.” We say that a set S of complex numbers
is “invariant under /™ if f/(S) = §. For example, a
cycle or a fixed point is an invariant set. If an invariant
set also satisfies /~'(5) = §, then we say that 5is “dou-
bly invariant.” For example, the point 0 is doubly in-
varant for the function x2, but the point | is not. The

_circle of radius 1, its interior, and its exterior are also

doubly invariant sets for x2.

What is a Julia set?

What is perhaps most interesting about Fig. 2 is not
the basin of attraction, or yellow and red portion of
the figure but rather the boundary between that basin
and the black region. This boundary is known as the
Julia set (or Julia-Fatou set) of the formula x* — 1.
Julia sets are named after the mathematician Gaston
Julia, who in the early 20th century elaborated many
of their properties. The Julia set is a geometric object
in the complex plane associated with a formula; in this
sense, a picture of the formula. Any polynomial has a
Julia set, and many other formulas have them, too.
Like the picture in Fig. 2, most Julia sets are fractals[ 3],
displaying an endless cascade of repeated detail.

There are several equally useful definitions of the
Julia set of a polynomial, two of which we shall present
here because they can be directly translated into com-
puter algorithms. For a complete discussion, see [1].

1. The Julia set is the closure of the set of repulsive
cycles of the polynomial.

2. The Julia set is the boundary between the set of
points that are attracted to infinity, and the set of
points that are not attracted to infinity.

How are Julia sets computed?

Using the above two definitions we provide two easy
algorithms for making computer graphics pictures of
the Julia set. An algorithm based on the first definition
can be found 1n [6]:

Start with a polynomial p{ x) and a starting point z;
in the complex plane, determine a sequence of complex
numbers as follows:

l. Given z,, find the inverse of p(x) applied to z,;
i.e., find the solutions x of the equation p(x) = z,.
There will be no more solutions than the degree of
the polynomial; and finding the solutions is partic-
ularly easy if p is quadratic, requiring a complex
square root.

2. Choose z,., randomly from the set of solutions.
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The above algorithm produces a sequence of points
{ =} in the compiex plane which converges to the Julia
set. If many (thousands) of the points after the first 20
or 50 are plotted as separate dots on a screen. they will
be seen to trace out a fractal. Fig. 5 was computed
using this algorithm.

A second algorithm, based on the second definition,
will more clearly delineate the Julia set for some poly-
nomials. The object is to identify the Julia set as the
boundary between points that are attracted to infinity,
and points that do not converge to infinity, For ex-
ample, if the polynomial has an attractive cycle, then
the points that are attracted to the cvcle can be rapidly
determined as not converging to infinity. Different
colors can be used to distinguish the two cases, thereby
representing the Julia set as the boundary between two
colors in a picture. To present this algorithm, assume
the polynomial p(z) has an attractive cycle consisting
of & points, x,, x3, * + + x,. We shall also need to choose
& “large” number ¥ and a “small” number ¢, Large
means, in this case. large enough that for |z| > N,
|p(z)| > }z|. In other words, N is large enough that
numbers as large as N are all attracted to infinity. Sim-
ilarly ¢ must be small enough that if z is within ¢ dis-
tance of x;, then = will eventually converge to the cyele.
Choosing numbers N and ¢ is not difficult, but may
occasionally involve some trial and error.

The algorithm consists of evaluating each point on
a square grid of the same resolution as the desired dis-
play device. If a point iterates to infinity, the corre-
sponding pixel is given one ¢olor: if the point ends up
in the cycle the pixel is given another color. The map-
ping between display device and screen coordinates
must be chosen so that the desired portion of the com-
plex plane is mapped to the screen.

For each pixel on the display device:

. Compute the complex number z = z;, that maps to
the center of the pixel.
2. Tterate the function (say 50 or more times) as follows

* compute the next iterate, z, = p{z,-,).

e Check if z, has absolute value greater than N, If
50, terminate the iteration, and color the pixel
appropriately.

s Check if z, is within distance ¢ of x,. If so, ter-
minate the iteration and assign the “other” color
to the pixel,

3. Ifail 50+ iterations compiete without exceeding N,
color the pixel as a point that does not get attracted
to infinity.

There are many variations on this algorithm which
can reduce the computation, or make the resulting
pictures more informative. For example, in Fig. 2 the
points that do not go to infinity are recognized by the
fact that they become close to elements of the cycle.
Ifa point ends up in the cycle, the number of iterations
modulo the length of the cycle can be used to color-
code the vartous components of the basin of attraction.
This is used to obtain the pattern of four colors in Fig.
3. Much of the striking use of coiors in [ 7] results from
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color-coding the number of iterations required to get
close to an attractive cycle.

Hhy are Julia sets fractals?

First, we provide an informal definition of fractal[3].
sufficient for our purposes: A fractal is a geometric
shape that possesses detail at all scales of magnification.
[n other words. one can magnify a fractal repeatedly.
and more detail will appear with each magnification.
Most but not all Julia sets are fractals: for exampte x?
and x* — 2 have respectively a circle and straight line
segment as Julia sets.

The repetitive structure of Julia sets can be explained
by considering their invariance properties. If x is in
the Julia set of a function £, then so is f{ x): conversely,
if /1 x) is in the Julia set of f, so is x. (This follows
from either of the above definitions of Julia set, and
we leave it as an exercise for the reader.)

Now, given that the Julia set is invariant, suppose
there is some feature £ or shape that occurs in the Julia
set. The double invariance of the Julia set implies that
S(F}. the image of F under f, also lies in the Julia set.
Furthermore, the conformality of the mapping / im-
plies that f{ F) will appear very similar to £

Repeatedly applving the function f. we see that any
feature that occurs in the Julia set will occur again and
again, distorted and rotated but of similar appearance.
Not only will an infinite number of copies of such fea-
tures reappear on the Julia set, but they will reappear
in arbitrarily small size. everywhere along the Julia
set, because the function f is expanding along the
Julia set.

Many (but not all} fractals are self-similar, so that
the fractal contains repeated scaled-down copies of it-
self. The fractals that occur as Julia sets are only ap-
proximately self-similar, in the sense that repeated
structures will be distorted rather than precise mag-
nifications of the original. This approximate self-sim-
ilarity was proved by Sullivan. (A proof can be found
in [1].}

Classification of Julia sets using the Mandelbrot set

Because different quadratic polynomials give rise to
very different Julia sets, it is useful to have a classifi-
cation of the different possible shapes that can arise,
This classification is best described with the aid of an-
other computer-generated illustration, shown in Fig.
4. This set, known as the Mandetbrot set (see [6], where
it was first desciibed) provides the mathematical
equivalent of a road map for the space of quadratic
polynomials. The Mandelbrot set should be regarded
as a picture of the set of all quadratic potynomials, in
the same sense that a fulia set is a picture of one par-
ticular polynomial.

For each complex number ¢, let £(x) denote the
polynomial x? + ¢. The Mandelbrot set is defined as
the set of values ¢ for which the successive iterates of
0 under /. do not converge to infinity. It is the set of
complex numbers ¢ such that

lim [f¢(0)] < =

n—=x
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Fig. 2. This illustrates the Julia set of the formula x* — 1,

which has an attractive two cycle. Points colored red are at-

tracted to 0 on odd iterations of the formula, and points colored

yellow are attracted to 0 on even iterations. The region at-
tracted to infinity s black.

One easy way to compute the Mandelbrot set is as
follows:

» For each complex number ¢ on a grid, compute the
iterates (0, L{/{0)), - - -

o [f the iterate becomes large in absolute value (say
greater than 5) then the point ¢ is outside the Man-
delbrot set and is shown white. Otherwise, stop the
iteration after a suitable number of tries, and display
the corresponding pixel as black.

As with the Julia set, more information (and more
artistic license) can be obtained by color-coding the
number of iterations used to determine the fate of a
given point.

How the Mandelbrot set works

By looking at where a given complex number ¢ oc-
curs relative to the Mandelbrot set, it is possible to
determine the dynamics associated with the formula
x% 4+ ¢, as well as to predict general properties of the
Julia set of /.. The different types of dynamics that
occur when f; is iterated are described as follows:

Fig. 3. This is the Julia set of the formula x? + .2809 — .53/,

There is an attractive four cycle, and the four colors are used

to identify the components of the basin of aftraction to the

cycle. Compare figures 6, 7, 8, and 9 of the quaternion Julia
set of the same formula.
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Fig. 4. This iltustrates the Mandelbrot set assoctated with the

formula x? — ¢. The formula is iterated for various values of

¢, and the point ¢ is colored black or white depending on

whether or not the iteration remains finite. The values of ¢

designated 2, 3, 4, 3, and 6 determine formulas with attractive
cycles of the respective lengths.

« The white portion of the figure, consisting of s for
which 0 iterates to infinity, corresponds to Julia sets
which are Cantor sets, totally disconnected fractals.
All points in the complement of the Julia set are
attracted to infinity, Fig, 5 shows an illustration of
this.

» The interior of the black region consists of values of
¢ for which /. has an attractive cycle other than in-
finity. The various components of the interior of the
black region correspond to different cycle lengths.
The central (cusped) component contains ¢’s such
that f, has an attractive fixed point. Different com-

] ¢
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Fig. 5. This illustrates a totally disconnected Cantor set that
is the Julia set of a quadratic polynomial. All points in the
complex plane, except dots colored black, iterate to infinity.
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Figs. 6, 7, 8, and 9. These four illustrations show components
of the Julia set of x% + .2809 — .53/ in a three-dimensional
subspace of the quaternions. The planar fractal shows the Julia
set in the complex plane. The different figures show how the
four colored regions extend into higher dimensions.

ponents correspond to different cyclic structures,
both in the length of the cycle, and in how the com-
ponents are arranged.
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For exampie, the value ¢ = 0, which lies in the
middle of the central shape. The formula f; is just
x%, having as Julia set the circle of radius 1.

Another example, ¢ = —1, corresponds to the
shape illustrated in Fig. 2. In this case the point lies
in the center of the black circle, denoted 2, in the
center. The resulting 2-cycle is indicated by the al-
ternating colors in Fig. 2.

In general it is easy to find cycles of any length
just by picking a value of ¢ from the interior of one
of these components. The cycle length is determined
by the position of the component. Consider for ex-
ample the sequence of shapes marked 2, 3, 4, 5, 6
in Fig. 4. They correspond to cycles of lengths 2. 3,
4, 5 and 6. Using a graphics display with crosshair,
it is easy to discover values of ¢ for which the formula
x® + ¢ has a desired cycle structure, Then by com-
puting the Julia set itself, one can distinguish between
other, more subtle features of the guadratic func-
tions.

» The boundary between the black and white portions
of Fig. 4 is perhaps the most significant feature of
the Mandelbrot set. Values of ¢ along this boundary
are associated with many different {and beautiful)
dynamical systems. Not only are such Julia sets the
most complex and intricate, but the mathematics of
the underlying dynamics is itself not completely un-
derstood. We shall not describe the possibilities here,
but refer the reader to [7] and [1]. The animation
“Dynamics of ¢®” [9] illusirates the transition in
structure of the Julia sets that occur along that
boundary.

Why does the Mandelbrot set work?

In order to understand the relevance of the Man-
delbrot set to the dynamics of quadratic polynomials,
we reconsider its definition. The trajectory of the point
0 under repeated applications of /; determines whether
the point ¢ lies inside or outside of the Mandelbrot set.
The significance of the starting point 0 is that it is the
“critical point™ of f; that is, the derivative f{z) van-
ishes at the point z = (. The Mandelbrot set can be
regarded as a diagram of the behavior of the critical
point under the quadratic mapping.

Fatou and Julia were well aware of the significance
of the critical point in classifying the dynamics of it-
eration. A basic result of Fatou (sce [1]) is that the
basin of attraction of an attractive cycle always contains
a critical point. Consequently, any attractive cycle for
J=can be found by following the iteration that starts at
0. If that iteration goes 1o infinity, /. can have no at-
tractive cycle other than infinity.

In general, the critical points of a mapping are im-
portant in describing the dynamics, Changes in the
behavior of the dynamical system defined by a formula
are accompanied by changes in the behavior of critical
points under iteration. This general principle can be
applied to many transformations other than quadratic
mapping, and we shall soon see its usefulness in de-
scribing the geometric structures that occur in iteration
of quaternion mappings.
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Fig. 10. This picture is associated with the formula 1.06ix( 1
— x). The planar Julis set of this formula is identical with the
Julia set of x? + .2809 — .53/, illustrated in Fig. 3; except that
it is rotated by 90 degrees. The four colors are used to illustrate
all the compaonents of the quaternion Julia set and how they
connect to the planar fractal. The resulting quaternion Julia
set is quite different topologically from the one illustrated in
Figs. 6-10 because of different interconnections resulting from
the placement of the imaginary axis.

EXTENDING TG HIGHER DIMENSIONS

Given the complexity and beauty of Julia sets and
the Mandelbrot set, it is natural to seek higher dimen-
sional generalizations. This is not only an interesting
mathematical question; such dynamical systems can
provide useful models for other disciplines, like com-
puter graphics and physics.

In the following we show how the dynamics of the
quadratic mapping gives rise to interesting geometric
structures in the 4-dimensional quaternion algebra. We
present these results not to show a completed analysis,
but to demonstrate the wide range of possibitities for
computer graphics illustration of dynamical systems.

What is a quaternion?

Quaternions were discovered in 1843 by the Irish
physicist and mathematician William R. Hamilton[2].
Attempting to define a 3-dimensional multiplication,
he found it necessary instead to extend to four dimen-

Fig. 1 1. This shape is also associated with a rotation of the

Julia set of Fig. 3, in this case a rotation of about 30 degrees.

The formula is (2. + 1.06/)x(1 — x). Note that the intercon-

nection pattern of loops differs from the pattern in Figs.
6-10,
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Fig. 12. This iilustrates the three-dimensional extension of the

Julia set of Fig, 2, from the formula x* — 1. Note that this is

just the three-dimensional figure swept out by rotating the
Julia set of Fig. 2 about the real axis.

sions. After this discovery, Hamilton and his contemn-
poraries devoted a considerable effort advocating the
application of quaternions to physics and other disci-
plines[4].

There are several reasons for elevating quaternions
above the status of “a mathcmatical curiosity.” For
example, the real numbers, the complex numbers, and
the quaternions are now known (by a theorem of Hur-
witz) to be the only Euclidean spaces in which we can
perform addition, subtraction, multiplication, and di-
vision (by nonzero elements). The standard vector
operators (dot and cross products) are naturally
embedded in the multiplication of quaternions, The
dynamics of motion in 3-space is thereby easily ex-
pressible in terms of quaternion operation. This rela-
tionship implies computational advantagés in- using
quaternions to express 3-D spatial manipulation
(see [10]).

We can describe quaternions as an extension of the
complex plane, comparable to the previgus discussion
of complex numbers as an extension of the real number
line. Complex numbers provide an extension of the
notion of “aumber” to permit us to consider numbers
as two-dimensional quantities. In other words, complex
numbers are just a set of rules for multiplying and
adding points in two dimensions. Similarly, quater-
nions may be regarded as a way of extending the notion
of “number” to four dimensions: The rules of quater-
nion multiplication and addition provide a way of
doing arithmetic on four-dimensional quantities.

To explicitly define quaternion multiplication, we
represent points in four dimensions in the form:

O=aytai+ajt ak

where 7, j, k are (like the imaginary number /) unit
vectors in three orthogonal directions, perpendicular
1o the real x-axis.

To add or multiply two quaternions, we treat them
as polynomials in /, j, k, but use the following rules
to deal with products:

P=t=k=-1

i§=—ji="tk jk=—kj=i ki=—ik=].
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Figs. 13, 14, and 15. These show the result when a 90 degree
rotation is applied to the formula of Fig. 2, resulting in i(x?
+ 1). No longer is the quaternion Julia set simply a rotation
of the planar Julia set, Figs, 14 and 15 illustrate the extensions
of the red and yellow components into three dimensions, Fig.
16 illustrates the combination of both red and yellow, showing

how the pair of shapes is linked together infinitely many times.

We note that, since for example i/ = —ji, the mul-
tiplication rule for quaternions is noncommutative; the
result of multiplying two quaternions depends on their
order. This greatly complicates the rules for doing al-
gebra with quaternions.

Analogous to the absolute value of a complex num-
ber, we have the “norm,” defined by:

|Q|* = ai + a% + a3 + a}.
This equals the squared distance from  to the origin

in four-space.

Quaternion polynomials
Note that if we identify the quaternion { with the
complex number {, then the complex plane can be
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regarded as situated inside the quaternions. This makes
it possible for us to consider any complex polynomial
as a polynomial over the quaternions as well. Expres-
sions like:

ax*+ hx+re

are then polynomials. However, the noncommutativity
of the quaternions implies that many polynomials
cannot be so simply described, For example, unless
the coefficients g and b are real, the above polynomial
is not equal to

xla+ bx+e,

nor

xla+ xb + ¢,
nor

xax + bx + ¢,
etc.

For the purposes of this article, we shall consider
only a small class of such quadratic polynomials, those
expressible in the form ax® + &, where ¢ and b are
complex numbers. We shall seé that even this class of
polynomials introduces a wealth of structure not seen
in the complex quadratic mapping,.

What is a Julia set of a quaternion polynomial?

We begin with the observation that a quaternion
polynomial can be used to define a dynamical system
on the quaternions: If p{ z) is a quaternion polynomial,
then for any quaternion g, p(¢) is another quaternion,
With the aid of a computer, quaternien polynomials
can be easily iterated, to evaluate the long-term be-
havior. We can still speak of attractive and repulsive
cycles, basins of attraction and the like, where the no-
tion of complex number is replaced by quaternion.

We shall generalize the (second) definition of Juhia
sets for complex polynomials: The Julia set of a poly-
nomial p(z) is the boundary of the set of quaternions
g such that p'")( g) converges to infinity as # becomes
large. There is another definition of more generality,
which we shall provide in the appendix, but for the
purposes of computing the shapes in this article, this
one definition will suffice.

Do quaternion Julia sets extend beyond the complex
plane?.

Consider a complex polynomial p{z). It will have
a Julia set Jin the complex plane, and J will necessarily
be contained in the quateérnion Julia set of p(z). But
J could in fact be the entire Julia set in the quaternions
as well, In other words, extending to the Quaternions
could provide us with nothing new. Fortunately, some
Julia sets can easily be seen to extend beyond the com-
plex plane, forming truly 4-dimensional objects.
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Fig. 16. This is associated with the formula (0.617

+0.774/)x(1 — x). The repeated pattern of holes in this shape

results when the imaginary axis intersects the planar Julia set
multiple times.

Consider the polynomial p(z) = ax* + b, where a
and b are complex numbers, and suppose furthermore
that p( z) has an attractive cycle in the complex plane.
That means there is an area in the complex plane of
points z such that p™(z) converges into the cycle. If
we show that other points outside the complex plane
are also attracted into the cycle, that will imply that
the domain of attraction to the cycle, as well as the
Julia set, extend beyond the complex plane.

This is in fact true, and a proof will be presented in
the appendix. Generally the polynomials of the form

Fig. t 7. An illustration of (—0.6 + 1.04{)x(1 — x}, associated

with a four-cycle. The long strands result from choosing the

imaginary axis Lo cross multiple components of the planar
Julia set.

Fig, 18. This quaternionic Julia set is associated with the cubic
polynomial, x? + (0.596 + 0.161{), showing a three-fold pat-
tern resulting from the singularity of the cubic mapping.

ax? + b do have Julia sets that extend, alithough other
polynomials, like ax? + &x, do not share this property.

How we compute and visualize a Julia set in the qua-
ternions

Technigues for computing and viewing quatérnion
Julia sets were presented in [8]. We shall briefly review
the methods used. The first problem is to model the
Julia set in such a way as to be tractable for 3D com-
puter graphics. The second problem is to construct a
3D image that conveys the fractal nature of the object.

How 4-dimensional quaternionic Julia sets can be
computed in three dimensions

The quaternionic Julia set as defined is a subset of
4-gpace, and such sets can in general only be sampled,
not fully exhibited in one 3D picture. However, in the
particular case that the polynomial has complex coef-

Fig. 19. A three-dimensional slice of a Mandelbrot set of x*
~ ¢, in the quaternions.
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ficients we can use certain symmetries to reduce the
dimension of the problem. Consider a three dimen-
sional subspace of the quaternions that we obtain by
adjoining to the complex plane any quaternion g that
lies in the plane of j and k. The four dimensional Julia
set intersects this three-dimensional space with a set
J, that depends on the g chosen. In fact, the sets J,
are congruent (i.e., of identical geometric shape) re-
gardless of the choice of ¢. This means that, in order
to completely understand such 4-dimensional Julia
sets, we need only compute their intersection in one
3-dimensional space containing the complex plane. For
example, we can use the space spanned by 1, /, j.

Computing the 3D Julia set

In theory these could be computed by the same sim-
ple algorithm we presented above for complex Julia
sets. The polynomial could be iterated, starting with
each point on a 3D grid, determining for each such
grid point whether the corresponding quaternion it-
erates to infinity. In practice, that method is intractable,
requiring evaluation of billions of grid points to obtain
moderately high-resolution pictures.

To compute iltustrations for this article, the amount
of computation is substantially reduced by only com-
puting boundary points, rather than evaluating every
vertex on the grid. The algerithm follows the boundary
of the basin of attraction for a cycle, wherever the
boundary may lead, tracking it through a 3-dimen-
sional grid. Points far from the boundary are never
evaluated.

By selectively following various components of the
basin of attraction, it is possible to determine how these
components are connected, without determining the
whole Julia set. Figs, 6-9 show different components
of the basin of attraction to the four-cycle associated
with p(x) = x? + {0.2809 — 0.53/), By computing
and viewing them separately we determine how they
are interconnected.

Making pictures of 3D fractals

Once the Julia set has been computed, as a set of
vertices in a three-dimensional gnid, a second com-
putation is required to produce a two-dimensional im-
age, suitable for raster display. Because of the fractal
nature of the surface it is important to present the image
in a manner that conveys information about surface
texture, When we view real physical objects, we un-
derstand the three-dimensional surface structure by
noticing shadows and shading on the surfaces. Similar
visual cues must be generated by the computer if we
are to perceive the surface structure.

In the images presented here, we simulate the surface
illumination by a “z-buffer” algorithm [ 8 ]: All surface
elements (i.e., grid points) are projected into a depth
buffer to determine the element closest to the light
source. Only surfaces visible to the light source receive
illumination. Only after the illumination is complete,
and a brightness value is known for each surface ele-
ment, is the actual image computed. This is done
through another z-buffer projection to the viewer.
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Interconnections and loeps in Julia sels

The images of quaternionic Julia sets, resulting from
the above computation, reveal a surprising wealth of
detail, not obviously deducible from the Julia sets in
the complex plane. Perhaps the most striking features
of these shapes are the long strands or loops that in-
terconnect different portions of the complex Julia set.

Consider for example the shape depicted in Fig. 6.
This shows the complex Julia set as a planar slice
through the quaternionic Julia set. Only one compo-
nent of the basin of attraction to the four-cycle has
been followed into the quaternions. We see how some
of the planar components (colored yellow) become
interconnected in three dimensions, and others do not.

We can alter the loop interconnection pattern {and
therefore the quaternionic Julia set) without changing
the complex planar Julia set. For any angle &, the for-
mula e®x? + ¢~ defines a Julia set in the complex
plane that is congruent to the Julia set of x* + ¢. This
just rotates the Julia set of x? 4 ¢ by the angle 8 about
the origin in the complex plane. This change of the
formula does more than just a rotation in the quater-
nions, resulting in a change in the topological structure
of the Julia set. See for example Figs. 10 and 11, illus-
trating the quaternionic Julia sets that result when the

m " .
angle # is, respectively, 3 and s radians.

We shall show how one can predict these intercon-
nections, and provide a mechanism for obtaining a set
with desired connections. To explain the interconnec-
tion patterns it is necessary to discuss the squaring
mapping p{x) = x? in terms of how it acts on the 4-
dimensional space of quaternions.

The squaring mapping and its critical set in the qua-
lernions

Recall first how the squaring function acts on the
complex plane. If we represent a complex number
in polar coordinates, z = re®, then its square is 27
= p2g?® Sguaring results in a doubling of the polar
angle, so that the mapping wraps the plane twice
around the orgin. Squaring is & two-to-one mapping
except at the single critical point, 0, which is mapped
to itself.

Similarly, in the guaternions, the squaring map is
usually a two-to-one map: A quaternion and its neg-
ative have the same square. However, there is a much
larger critical set, where the mapping fails to be two-
to-one. Recall from the definition of quaternion mul-
tiplication that (% = j% = k* = —1. This shows that — 1,
at least, has more than two square roots. In fact, there
is an entire two-dimensional sphere of quaternions ¢
such that g* = —1; namely ¢ can be any norm-one
quaternion with zero real part.

The critical set of the quaternion polynomial ax?
+ b is precisely the set of quaternions of zero real part.
The above examples iliustrate the fact that the quater-
nion squaring map fails to be two-to-one precisely on
that set of quaternions of zero real part; the square of
any such quaternicn lies on the negative real axis.
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We describe the squaring mapping as follows: Let
L’ be the set of quaternions with positive real part, and
—U those with negative real part. Under a squaring
operation, both [ and —{’ are mapped onto the com-
plement of the negative real axis. Every quaternion,
except those on the negative real axis. has exactly two
square roots, one in {/ and one in —{". The boundary
of L’ (ihe quaternions with zero real part} is folded
onto the negative real axis, taking all points of the
boundary of radius r to the negative real number —r°,

Collapsing of two-spheres

Note that the inverse under the squaring map of any
negative real number is a two-dimensional sphere, so
that the action of the mapping is to collapse such
spheres to points. This “collapse of 2-spheres” has
conseguences in the geometry of shapes invariant under
a squaring opération. Suppose a set Sis invanant under
the polynomiat ax? + 5. If a point g of S lies in the
set which is collapsed to a point under the squaring,
then invariance of § implies that the entire collapsing
2-sphere containing g lies in 5. Since the Julia set is
an example of an invanant set, this implies the exis-
tence of numerous 2-spheres in the Julia set. if the
Julia set crosses the set of quaternions with zero real
part.

The loops in the 3-dimensional shapes pictured here
can be explained by this phenomenon. The 2-spheres
in the Julia set correspond to 1-spheres {loops) in the
3-dimensional slices of the Julia set that we are dis-
playing. The lpops that are visible in the illustrations
result from intersections between the Julia set in the
complex plane and the imaginary axis: If such an in-
tersection occurs at a point P in the complex plane,
then there is a loop in the 3D shape, connecting F and
— P in a circle. Once one such loop L exists, there will
occur in the Julia set an infinite cascade of other loops,
namely /' (LY, S (LY. ..., ete.

How can we determine the topology of a quaternionic
Julia set?

The discussion above gives a recipe for constructing
loops in the quaternionic Julia set. More generally, we
can design Julia sets with various interconnection pat-
terns. -

Consider again the formula f, = x* + ¢, having
complex planar Julia set J., and suppose that f, has an
attractive cycle, so that J. is the boundary between the
points {in the basin of attraction ) that are attracted to
the cvele, and the points attracted to infinity. If two
components of the planar basin of attraction are located
diametrically opposile, we can modify the formula 1o
cause those components to be interconnected by a loop
in the quaternions.

This is done as follows: Choose a line through the
origin that intersects both the opposite components.
Let 8 be the angle of rotation (clockwise) between the
positive x-axis and the line. The formula to be iterated
in the quaternions is then ¢x* + ¢~%¢. This formula
then has the same complex planar Julia set as £, except
that 1t 1s rotated by the angle # about the ongin. In the

guaternions. however. the two components to be con-
nected now lie on the imaginary axis, so there will be
a loop ( more precisely, a two-sphere in four-space) in
the quaternion basin of attraction, intersecting and
connecting them both.

In some instances. not only one loop, but an infinite
cascade of interconnected loops are created by this
process. Suppose for example that a component of the
2-D basin of attraction that intersects the loop contains
a point of the attractive cycle {not just a preimage of
the cyclic point). The connected 4-dimensional com-
ponent of that ¢cyclic point will then be an invafant
set under the mapping /. The invariance of this com-
ponent implies that it will contain an infinite number
of loops. preimages of the starting loop.

One final exampie to illustrate this technique. We
have seen already (in Fig. 2) the complex planar Julia
set of x? — 1. When computed in the quaternions Fig,
12 results, a surface of revolution aboult the x axis. The
only interconnections are those introduced by the
components on the imaginary axis. and all ofthe loops
are simple rings about the x axis.

Instead, let us rotate the complex Julia set by 90
degrees. obtaining the formula i{x? + 1). The com-
ponents of the basin of attraction, formerly situated
along the real axis at —| and +1, are now along the
imaginary axis at +/ and —{. This causes the compo-
nent containing —i and its opposite, the component
containing I, to become connected in the quaternions.
By considering the preimages of this pair {these are
necessarily connected as well), it is not difficult to show
that all of the quaternionic basin of attraction becomes
divided into just two connected components, illustrated
in Figs. 13 and 4. The red component consists of
points attracted to 0 on odd iterations, and the vellow
points are attracted to 0 on even iterations. These two
components fit together (and intertwine) without
overlap, as illustrated in Fig. 13.

Other directions

We have only presented some of the simplest geo-
metric manipulations that can be imposed on the qua-
ternion Julia sets. Figs. 16-18 illustrate some of the
further directions that one can explore. These depict
the formulas (0.617 + 07740 x(1 — x). (-0.6
+ L045x(1 — xhoand X7+ {0,396 + 0.261/). re-
spectively. Fig. 16 shows that, by careful placement of
the critical set, it is possible 1o cause repeating patterns
of holes in the Julia set (rather than repeating patterns
of interconnectivity ). Fig. 17 demonstrates how long
strands in the quaternionic Julia set can be induced
by appropriate manipulation of a “stringy™ Julia set
in the complex plane. Fig. 18 shows the Julia set of a
cubic polynorial. illustrating that the critical set of
higher-degree polynomials can similarly be manipu-
fated.

Mandelbrot sets in higher dimensions

Implicit in the above discussion (but not proved
here) is a method for describing the structure of qua-
ternionic Julia sets for quadratics of the form ax®
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+ b, with @ and & complex numbers. That structure
can be derived from a knowledge of the planar Julia
set together with a parameter 4. determining how the
imaginary axis {and therefore the critical set) intersects
the planar Julia set. A three-dimensional space (the
planar Mandelbrot set, together with #) is required to
parameterize these dynamical systems. There is a space
that serves as Mandelbrot set for these functions, clas-
sifying the dynamics that occurs in the quaternions.
Unfortunately, that space can be embedded only in
four dimensions, so we can only show three-dimen-
sional slices as exhibited in Fig. 19, This Mandelbrot
set can be identified with the boundary of the set of
pairs of complex numbers ( z, ¢) such that f{"(z) re-
mains bounded as # — oo. The slice of this shape in
Fig. 19 is the subset defined by restricting ¢ to vatues
on the boundary of the central component of the Man-
delbrot set.
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APPENDIX
In this section we provide a mathematical justification for
some of the statements in the paper. The mathematical level
of this discussign assumes understanding of advanced calculus.

Formal definition of Julia sets
The usual definition of Julia set is different than the ones
we have used in this article. We begin by recalling the notion

of equicontinuity: A set of functions { £} is said to be equi-
continuous at a poind x if for any constant § there 1s an € such
that for every {

[flx + k)Y - fix) <5

whenever |k| <e.

This condition is stronger than saying that all the furctions
f; are continuous at x, because it requires the same ¢ to work
for all the functions. If all the derivatives of the functions £
are bounded by the same constant, then the set of functions
is equicontinuous.

The Julia set of 2 complex function f{ x) is the set of complex
numbers z such that the set of all iterates of /, { S/}, is not
equicontinuous at z. For quaternion functions we take the
same definition, replacing absolute values in the above state-
ment with the quaternion norm.

This definition does not necessarily coincide with the one
we used above, unless some restrictions are placed on the
functions /. If f is a complex polynomial then Monte!'s theo-
rem can be used to show the equivalence (see [1]). If fisa
quaternion polynomial the equivalence is not clear. It may
occur that for some quaternion polynomials the boundary of
the set of points attracted to infinity is a proper subset of the
Julia set, although this has not been observed.

Derivatives of quaternion polynomials

To reason about attraction and repulsion in the quatemions
it is useful to have a means of computing derivatives. Because
quaternion polynomials are mappings on four-dimensional
space, their denivatives cannot be represented simply as a nu-
merical value. The derivative of such a function f{x) at a
point x must be regarded instead as the Jacobian matrix, or
the linear transformation that best approximates the poly-
nomial near the point x. In other words, the derivative T of
S at x is a linear transformation such that f{x + y) is ap-
proximately equal to f{ x) + T{y) for y near 0.

An easy way of representing this linear transformation is
10 specify what it does to a quaternion y. The derivative of a
polynomial is the sum of the derivatives of the monomials in
it, so it is enough 1o differentiate monomials, The derivative
of a monomial, evaluated at p, is the sum of all the monomials
that are each obtained by replacing one cccurrence of x by
the value y. Some examples: The derivative of x* at a qua-
ternion x is the linear transformation that takes a quaternion
y to the quaternion xy + yx. The derivative of x? is the trans-
formation whose value at y is x?y + xpx + yx*

Attractive cyeles in the quaternions

We can use the above formulation of the Jacobian derivative
to show that attractive cycles for complex polynomials of the
form ax? + b extend to be attractive in four dimensions, im-
plying that the quaternion Julia sets of such polynomials are
nontrivial extensions of their complex planar counterparts. It
suffices to consider an attractive fixed peint p; cycles admit a
similar proof. If p is an attractive fixed point, then we know
the absolute value of the complex derivative satisfies | /*{p)!
< 1. To show that p is attractive in the quaternions, we need
to know that Jacobian matrix of f at p, as a linear transfor-
mation, has norm less than one. The Jacabian of ax? + &,
applied at p to a quaternion y has value a{py + yp). Using
the multiplicativity of the quaternion norm, we see that the
norm is at most 2|a| | pl{y]. Since 2|a||{ p| is the absolute
value of the complex derivative of f at p, we conclude that
the Jacobian matrix does in fact have norm less than one,
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